x parameters

Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters presented by...

0 downloads 107 Views 1MB Size
Advanced Nonlinear Device Characterization Utilizing New Nonlinear Vector Network Analyzer and X-parameters presented by:

Loren Betts Research Scientist

Presentation Outline  Device Characteristics (Linear and Nonlinear)  NVNA Hardware (The need for phase)  NVNA Error Correction  NVNA Measurements Component Characterization Multi-Envelope Domain X-Parameters

Nonlinear Hierarchy from Device to System Systems Modules

n tio a riz g e t n ac deli r a Ch d mo an

Chips Circuits

Instrument Front-ends Cell Phones Military systems Etc.

Devices

Amplifiers, Mixers, Multipliers, Modulators, …. Transistors, diodes, …

Nonlinearities

y (t )

x(t )

ω1

x(t ) = Ae

2ω1

ω1 j ( w0t +φ0 )

y (t ) = a0 + b0 e

jθb0

x(t )

y (t ) = a0 + b0e

jθb0

3ω1

 Ae j (ω0t +φ0 ) 

+ c0 e

jθc0

x(t ) 2

+c0e

jθc0

 A2e j 2(ω0t +φ0 ) 

+ d0e

jθ d0

x(t )3

+ d0e

jθ d0

 A3e j 3(ω0t +φ0 ) 

The Need for Phase Cross-Frequency Phase Notice that each frequency component has an associated static phase shift. Each frequency component has a phase relationship to each other.

Why Measure This? If we can measure the absolute amplitude and cross-frequency phase we have knowledge of the nonlinear behavior such that we can:  Convert to time domain waveforms (eg: scope mode).

y = a0 + b0e +c0e

jθ c0

+ d0e

jθ d0

jθb0

 Ae j (ω0t +φ0 ) 

 A e 2

j 2(ω0t +φ0 )

 A e 3

j 3(ω0t +φ0 )

 Measure phase relationships between harmonics.



 Generate model coefficients.



 Etc…..

 Measure frequency multipliers.

NVNA Hardware Take a standard PNA-X and add nonlinear measurement capabilities

Agilent’s N5242A premier performance microwave network analyzer offers the highest performance, plus:

2- and 4-port versions Built-in second source and internal combiner for fast, convenient measurement setups Spectrally pure sources (-60 dBc) Internal modulators and pulse generators for fast, simplified pulse measurements Flexibility and configurability Large touch screen display with intuitive user interface

Measuring Unratioed Measurements on PNA-X Unratioed Measurements – Amplitude Works fine.

a10

a20

Ever tried to measure phase across frequency on an unratioed measurement? b10

Sweep 1

b20

a11

b21

b11

a12

Sweep 2

Measuring Unratioed Measurements on PNA-X Unratioed Measurements – Phase Phase response changes from sweep to sweep. As the LO is swept the LO phase from each frequency step from sweep to sweep is not consistent. This prevents measurement of the cross-frequency phase of the frequency spectra.

Sweep 1

Phase Shifted

Sweep 2

NVNA Hardware Configuration Generate Static Phase  Since we are using a mixer based VNA the LO phase will change as we sweep frequency. This means that we cannot directly measure the phase across frequency using unratioed (a1, b1) measurements.  Instead…ratio (a1/ref, b2/ref) against a device that has a constant phase relationship versus frequency. A harmonic phase reference generates all the frequency spectrum simultaneously.  The harmonic phase reference frequency grid and measurement frequency grid are the same (although they do not have to be generally). For example, to measure a maximum of 5 harmonics from the device (1, 2, 3, 4, 5 GHz) you would place phase reference frequencies at 1, 2, 3, 4, 5 GHz.

NVNA Hardware Configuration Phase Reference  One phase reference is used to maintain a static cross-frequency phase relationship.  A second phase reference standard is used to calibrate the cross-frequency phase at the device plane.  The phase reference generates a time domain impulse. Fourier theory illustrates that a repetitive impulse in time generates a spectra of frequency content related to the pulse repetition frequency (PRF) and pulse width (PW).  The cross-frequency phase relationship remains static.

Mathematical Representation of Pulsed DC Signal y (t ) = ( rect pw (t )) ∗ shah

1 prf

(t )

∑n δ(t-n(1/prf)) rectpw (t) t -1/2pw

0

1/2pw

*

...

...

...

... t

-2/prf -1/prf

0

1/prf 2/prf

-1/prf

Y ( s ) = ( pw . sinc ( pw . s )) . ( prf . shah ( prf . s )) Y ( s ) = ( pw . sinc ( pw . s )) . ( prf . shah ( prf . s )) Y ( s ) = DutyCycle . sinc ( pw . s ) . shah ( prf . s )

0

1/prf

Frequency Domain Representation of Pulsed DC Signal Frequency Response  Drive phase reference with a Fin frequency.

 Want to stimulate DUT with 1 GHz input stimulus and measure harmonic responses at 1, 2, 3, 4, 5 GHz.  Fin = 1 GHz  Can practically use frequency spacings less than 1 MHz

Normalized Amplitude

 Example:

0.8

0.6

0.4

0.2

0 0

10

20

30

40

50

60

70

80

90

100

Frequency in GHz 1

Normalized Amplitude

 Get n*Fin at the output of the phase reference.

1

0.8

0.6

0.4

0.2

0 0

5

10

15

Frequency in GHz

20

25

NVNA Hardware Configuration If we were to isolate a few of the frequencies from the phase reference we would see that the phase relationship remains constant versus input drive frequency and power. 1 0.5

cos(ω0t + φ0 )

1 GHz

0 -0.5 -1 0

0.1

0.2

0.3

0.4

0.5 Frequency - 1 GHz

0.6

0.7

0.8

0.9

1

1 0.5

cos(2ω0t + φ1 )

2 GHz

0 -0.5

Phase relationship between frequencies remains the same

-1 0

0.1

0.2

0.3

0.4

0.5 Frequency - 2 GHz

0.6

0.7

0.8

0.9

1

1 0.5

cos(3ω0t + φ2 )

3 GHz

0 -0.5 -1 0

0.1

0.2

0.3

0.4

0.5 Frequency - 3 GHz

0.6

0.7

0.8

0.9

1

1 0.5

cos(4ω0t + φ3 )

4 GHz

0 -0.5 -1 0

0.1

0.2

0.3

0.4

0.5 Frequency - 4 GHz

0.6

0.7

0.8

0.9

1

Example NVNA Configuration #1 Using external source for phase reference drive Source 1 Source 2 (standard)

OUT 2

OUT 1

OUT 1

J11

J10

J9

J8

OUT 2

J7

SW1

J4

SW3

Test port 1

D 35 dB

65 dB

Test port 3

J1

R2

C 35 dB

J2

SW2

R4

A 65 dB

Rear panel

SW4

R3

R1

J3

B 35 dB 65 dB

65 dB

35 dB

Test port 2

Test port 4 To port 1 or 3 Ext Source in

Calibration Phase Reference

Measurement Phase Reference

Example NVNA Configuration #2 Multi-Tone, SCMM, DC/RF, Calibrated receiver mode Source 1 OUT 1

Source 2

OUT 2

OUT 2 OUT 1

Rear panel

R3

R1

R4

A

C 35 dB

65 dB

Test port 1

R2 D

35 dB 65 dB

Test port 3

B 35 dB 65 dB

65 dB

Test port 4

35 dB

Test port 2 To port 1 or 3 Ext Source in

Calibration Phase Reference

Measurement Phase Reference

NVNA Error Correction Algorithms Generalized VNA HW

a1 → Incident voltage traveling wave

• The input and output waves from a two port device are measured. Systematic measurement hardware errors prevent accurate measurements of the device. • Calibration and error correction provide the means to get an accurate representation of the device characteristics.

b1 → Reflected voltage traveling wave Zo → Normalization term V1 → Voltage applied to port 1 of device I1 → Current applied to port 1 of device V1 = Zo [ a1 + b1 ] → Incident voltage wave + Reflected voltage wave I1 =

[ a1 − b1 ] → Incident current wave Zo

Therefore (in units of 1 a1 = [ V1 + I1Zo ] 2 Zo a10

a20

b10

b20

b1 =

− Reflected current wave

Watts),

1 [ V1 − I1Zo ] 2 Zo

Incident Power = a1

2

Reflected Power = b1

2

Therefore (in units of Volts), a11

b21

b11

a12

2

1 a1 = [ V1 + I1Zo ] 2

a Incident Power = 1 Zo

1 b1 = [ V1 − I1Zo ] 2

b1

Reflected Power =

2

Zo

NVNA Error Correction Algorithms 12 Term Error Model - A 12 term error model is often used to eliminate systematic measurement errors. Assume crosstalk negligible e110

a10 e100 b10

a11 e111

S11

e101

b11

*

b21

S 21

b20

e201 *

e11 2

S22

a12

S12

Forward Direction a11 *

e111

b10

*

e101

S11 b11

e201

b21

S 21

e11 2

S 22 S12

Reverse Direction

a12

b20 e200

e10 2

a20

NVNA Error Correction Algorithms 12 Term Error Model - Terminology - Common terminology used today

e100 = Port 1 Directivity(dp1 )

e200 = Port 2 Directivity(dp2 )

e111 = Port 1 Source Match(smp1 )

e211 = Port 2 Source Match(smp2 )

*

e11 2 = Forward Load Match(lm fwd )

*

e111 = Reverse Load Match(lmrev )

e110 e101 = Forward Reflection Tracking(rt fwd )

01 e10 2 e2 = Reverse Reflection Tracking(rt rev )

10 01* 1 2

10 01* 2 1

e e

= Forward Transmission Tracking(tt fwd )

Port 1

e e

= Reverse Transmission Tracking(ttrev )

Port 2

NVNA Error Correction Algorithms Generalized 8 Term Error Model • The 8 term model accounts for changes in the match of the source and load by either measuring all the ‘a’ and ‘b’ waves or by calculating the ‘a’ waves from match coefficients (like delta match).

a10

e110

e100 b10

a11 e111

e101

S11 b11

e11 2

S22 S12

e201

b21

S21

a12

b20 e200

e10 2

a20

NVNA Error Correction Algorithms Conversion of 12 Term Model to 8 Term Model • To utilize the standard vector calibration algorithms a conversion is done to generate the 8 term model from the 12 term model. a10

e110

S11

e101

b11

*

b21

S 21

e111

e100

b10

a11

*

Γ 02

e200

e11 2

S 22

e10 2

a12

S12

b20

e201

a20

Forward Direction

a10

e110 *

e100

Γ10

b10

a11 e111

*

e101

S11 b11

e201

b21

S 21

S12

Reverse Direction

e200

e11 2

S 22 a12

b20

e10 2

a20

NVNA Error Correction Algorithms (17)

Conversion Equations • The conversion relationship equations to map the 12 term coefficients to the 8 term coefficients

e100 = dp1 11 1

11* 1

e =e

e200 = dp2 rt fwd Γ10 e110e101Γ10 − = lmrev − = smp1 1 − e100Γ10 1 − dp1Γ10

e110 e101 = rt fwd

11 2

11* 2

e =e

01 0 rtrev Γ 02 e10 2 e2 Γ 2 − = lm fwd − = smp2 1 − e200Γ 02 1 − dp2 Γ 02

01 e10 2 e2 = rt rev *

e110 e201 = e110 e201 1 − e200 Γ 02  = tt fwd 1 − dp2 Γ 02  a10 0 Γ1 = 0 b1

Port 1

*

01 00 0 0     e210e101 = e10 2 e1 1 − e1 Γ1  = tt rev 1 − dp1Γ1  a20 0 Γ2 = 0 b2

Port 2

NVNA Error Correction Algorithms Conversion Equations • Instead of calculating the gamma terms we can instead directly calculate the 8 term model tracking coefficients from the 12 term coefficients.

Γ 02 =

lm fwd − smp2 rtrev + dp2 lm fwd − smp2 

e110 e201 = tt fwd 1 − dp2 Γ 02 

10 01 1 2

e e = tt fwd

  lm fwd − smp2 1 − dp2  rtrev + dp2 lm fwd − smp2   

Port 1

Γ10 =

rt fwd

lmrev − smp1 + dp1 [lmrev − smp1 ]

01 0   e10 2 e1 = tt rev 1 − dp1Γ1 

  lmrev − smp1 01 1 e10 e tt dp = −  2 1 rev  1 rt fwd + dp1 [lmrev − smp1 ]  

Port 2

NVNA Error Correction Algorithms 8 Term Model Coefficients • We now have the 8 term model coefficients…however we need to isolate the terms to relate the amplitude and cross-frequency phase.

e100

e200

e111

e11 2

e110 e101

01 e10 2 e2

e110 e201

01 e10 2 e1

Port 1

Port 2

NVNA Error Correction Algorithms Isolating Coefficients - Amplitude • Error model of VNA port and amplitude (power sensor and meter) calibration device. This isolates the amplitude of one of the tracking coefficients. a10

e110 e111

e100 b10

a11 = a10e110 + b11e111

a11

e101

es01

bs0

e11 s b11

b10 = a10 e100 + b11e101 a11 =

01 2 1

e

1 0 11 0 10 01 00 11 b e + a1  e1 e1 − e1 e1   01  1 1   e1

=

b e + a e e − e e  0 11 1 1

0 1

10 01 1 1 1 2 1

a

00 11 1 1

2 1 1

1 2 1

→ The power meter returns the power of a = a

NVNA Error Correction Algorithms Isolating Coefficients - Phase • Error model of VNA port and phase reference (harmonic comb generator) calibration device. This isolates the phase of one of the tracking coefficients by relating the phase (cross-frequency phase) at all frequencies. a10 e110 a11

e100 b10

0 1

b = e101 =

aφ0 eφ10 e101 + a10 e100 1 − e111eφ11  + a10 e110 eφ11e101 1 − e111eφ11

e101

=

eφ11

e111 b11

eφ10

aφ0

aφ0 eφ10 e101 + a10 e100 − a10 eφ11  e100 e111 − e110 e101  1 − e111eφ11

b10 1 − e111eφ11  − a10 e100 + a10 eφ11 e100 e111 − e110 e101  aφ0 eφ10

 b10 1 − e111eφ11  − a10 e100 − eφ11 e100 e111 − e110 e101          φ ( e101 ) = φ  → The phase reference term aφ0 eφ10 is known 0 10   aφ eφ  

NVNA Error Correction Algorithms Isolating the Rest of the Coefficients in the 8 Term Model • We now have the 8 term model coefficients…however we need to isolate the terms to relate the amplitude and crossfrequency phase.

e100

e200

e111

e11 2

e110 e101

01 e10 2 e2

e110 e201

01 e10 2 e1

Terms already isolated Terms to isolate Calculation path

e100

e200

e111

e11 2

e101 e110 e101 e = 01 e1 10 1

Port 1

Isolate amplitude and crossfrequency phase using power sensor and phase reference

10 01 e e e201 = 2 102 e2 01 e10 2 e1 e = 01 e1 10 2

Port 2

NVNA Error Correction Algorithms Error Correction Matrix • We now have isolated all the error coefficients in the 8 term model and can now relate the uncorrected waves to the corrected wave of the DUT. Notice 01 each ‘R’ term is multiplied by e101 and e2 which provide the cross-frequency phase relationship between the uncorrected and corrected ‘a’ and ‘b’ waves. a10

e110

e100 b10

 a11   R100  1   10  b1  =  R1  a12   0  1   b2   0

a11 e111

e101

S11 b11

R101 R111

0 0

0 0

R200 R210

0   a10    0   b10  R201   a20    R211   b20 

e201

b21

S21

e11 2

S22 S12

a12

b20 e200

e10 2

a20

R100 =

1 10 01 00 11 e1 e1 − e1 e1  e101 

R200 =

1 10 01 00 11 e2 e2 − e2 e2  e201 

R101 =

1 11 e1  e101  

R201 =

1 11 e2  e201  

R110 =

1  −e100  01  e1

R210 =

1  −e200  01  e2

R111 =

1 e101

R211 =

1 e201

NVNA Applications (What does it do?) Time domain oscilloscope measurements with vector error correction applied View time domain (and frequency domain) waveforms (similar to an oscilloscope) but with vector correction applied (measurement plane at DUT terminals) Vector corrected time domain voltages (and currents) from device

NVNA Applications (What does it do?) Measure amplitude and cross-frequency phase of frequencies to/from device with vector error correction applied View absolute amplitude and phase relationship between frequencies to/from a device with vector correction applied (measurement plane at DUT terminals) Useful to analyze/design high efficiency amplifiers such as class E/F 1 GHz

Stimulus to device

Can also measure frequency multipliers

Fundamental Frequency Source harmonics (< 60 dBc)

Output from device 2 GHz Output harmonics

Input output frequencies at device terminals

1 GHz 122.1 degree phase delta

Phase relationship between frequencies at output of device

NVNA Applications (What does it do?) Measurement of narrow (fast) DC pulses with vector error correction applied View time domain (and frequency domain) representations of narrow DC pulses with vector correction applied (measurement plane at DUT terminals) Less than 50 ps

NVNA Applications (What does it do?) Measurement of narrow (fast) RF pulses with vector error correction applied

View time domain (and frequency domain) representations of narrow RF pulses with vector correction applied (measurement plane at DUT terminals) Using wideband mode (resolution ~ 1/BW ~ 1/26 GHz ~ 40 ps) Example: 10 ns pulse width at a 2 GHz carrier frequency. Limited by external source not NVNA. Can measure down into the picosecond pulse widths

NVNA Applications (What does it do?) Measurements of multi-tone stimulus/response with vector error correction applied View time and frequency domain representations of a multi-tone stimulus to/from a device with vector correction applied (measurement plane at DUT terminals) Input Waveform

Stimulus is 5 frequencies spaced 10 MHz apart centered at 1 GHz measuring all spectrum to 20 GHz Output Waveform

Measure amplitude AND PHASE of intermodulation products Generated using external source (PSG/ESG/MXG) using NVNA and vector calibrated receiver

NVNA Applications (What does it do?) Calibrated measurements of multi-tone stimulus/response with narrow tone spacing View time and frequency domain representations of a multi-tone stimulus to/from a device with vector correction applied (measurement plane at DUT terminals) Stimulus is 64 frequencies spaced ~80 kHz apart centered at 2 GHz. The NVNA is measuring harmonics to 16 GHz (8th harmonic) Multi-tone often used to mimic more complex modulation (i.e. CDMA) by matching complementary cumulative distribution function (CCDF). Multitone can be measured very accurately.

NVNA Applications (What does it do?) Calibrated measurements of multi-tone stimulus/response with narrow tone spacing View time and frequency domain representations of a multi-tone stimulus to/from a device with vector correction applied (measurement plane at DUT terminals) Stimulus is 64 frequencies spaced ~80 kHz apart centered at 2 GHz. The NVNA is measuring harmonics to 16 GHz (8th harmonic)

Multi-Envelope Domain Memory Effects in Nonlinear Devices x(t )

y (t )

ω1

ω1 x(t ) = A1 e jθ1 e− jω1t Single frequency pulse with fixed phase and amplitude versus time

2ω1

 Can measure envelope of the fundamental and harmonics with NVNA error correction applied. Use to analyze memory effects in nonlinear devices. 3ω1

 Get vector corrected amplitude and phase of envelope.  Use to measure and analyze memory effects in nonlinear devices.



y (t ) =



Bn (t ) e jφn ( t ) e− jΩnt

n =−∞

Multiple frequencies envelopes with time varying phase and amplitude

NVNA Applications (What does it do?) Measure memory effects in nonlinear devices with vector error correction applied

Output (b2) multi-envelope waveforms

View and analyze dynamic memory signatures using the vector error corrected envelope amplitude and phase at the fundamental and harmonics with a pulsed (RF/DC) stimulus

Each harmonic has a unique time varying envelope signature

NVNA Applications (What does it do?) Measure modeling coefficients and other nonlinear device parameters

… More

X-parameters Waveforms (‘a’ and ‘b’ waves)

Dynamic Load Line

Measure, view and simulate actual nonlinear data from your device

X-Parameters:

A New Paradigm for Interoperable Measurement, Modeling, and Simulation of Nonlinear Microwave and RF Components

S-parameters: linear measurement, modeling, & simulation Easy to measure at high frequencies  measure voltage traveling waves with a (linear) vector network analyzer (VNA)  don't need shorts/opens which can cause devices to oscillate or self-destruct  Relate to familiar measurements (gain, loss, reflection coefficient ...)  Can cascade S-parameters of multiple devices to predict system performance  Can import and use S-parameter files in electronic-simulation tools (e.g. ADS)  BUT: No harmonics, No distortion, No nonlinearities, … Invalid for nonlinear devices excited by large signals, despite ad hoc attempts 

Linear Simulation: Matrix Multiplication

S-parameters b1 = S11a1 + S12a2 b2 = S21a1 + S22a2

Model Parameters: Simple algebra

Measure with linear VNA: Small amplitude sinusoids S 21

Incident

Transmitted

a1 b2

S 11 Reflected

DUT Port 2

Port 1

b1

S 22 Reflected a2

Transmitted

S 12

Incident

bi S ij = aj

ak = 0 k≠ j

Scattering Parameters – Linear Systems Linear Describing Parameters • Linear S-parameters by definition require that the S-parameters of the device do not change during measurement.

y (t )

x(t )

a10

e110

e111

e100

b10

a11

e101

S11 b11

e201

b21

S21 S12

e200

e11 2

S22 a12

b20

e10 2

a20

b1 = S11a1 + S12 a2 b2 = S21a1 + S22 a2  b1   S11 b  =  S  2   21

S12   a1  S22   a2 

S-Parameter Definition To solve VNA’s traditionally use a forward and reverse sweep (2 port error correction).

Scattering Parameters – Linear Systems Linear Describing Parameters • If the S-parameters change when sweeping in the forward and reverse directions when performing 2 port error correction then by definition the resulting computation of the S-parameters becomes invalid.

b1 = S11a1 + S12 a2 b2 = S 21a1 + S 22 a2 x(t )

 b1   S11 b  =  S  2   21

b  b

f 1 f 2

b   S11 = b   S21 r 1 r 2

S12   a1  S 22   a2 

S12   a  S22   a

f 1 f 2

y (t )

Hot S22

a   a  r 1 r 2

This is often why customers are asking for Hot S22 because the match is changing versus input drive power and frequency (Nonlinear phenomena). Hot S22 traditionally measured at a frequency slightly offset from the large input drive signal.

X-parameters the nonlinear Paradigm: Have the potential to revolutionize the Characterization, Design, and Modeling of nonlinear components and systems X-parameters are the mathematically correct extension of S-parameters to large-signal conditions. • Measurement based, device independent, identifiable from a simple set of automated NVNA measurements • Fully nonlinear (Magnitude and phase of distortion) • Cascadable (correct behavior in even highly mismatched environment) • Extremely accurate for high-frequency, distributed nonlinear devices NVNA: Measure device X-parms

PHD component : Simulate using X-parms

ADS: Design using X-parms H A R M O N IC B A L A N C E H a r m o n ic B a la n c e HB2 F r e q [1 ]= R F f r e q O r d e r[1 ]= 5 U s e K r y lo v = n o E q u a t io n N a m e [ 1 ] = " R F f r e q " E q u a t io n N a m e [ 2 ] = " R F p o w e r " E q u a t io n N a m e [ 3 ] = " Z lo a d "

X-parameters come from the Poly-Harmonic Distortion (PHD) Framework

A1

A2

B1 k = F1 k ( D C , A11 , A12 , ..., A21 , A22 , ...) B 2 k = F2 k ( D C , A11 , A12 , ..., A21 , A22 , ...) Harmonic (or carrier) Index

B1

B2

Port Index

Unifies S-parameters Load-Pull, Time-domain load-pull

Data and Model formulation in Frequency (Envelope) Domain Magnitude and phase enables complete time-domain input-output waveforms

X-parameters: Systematic Approximations to NL Mapping Trade measurement time, size, accuracy for speed, practicality

Incident

Scattered B k ( D C , A1 , A 2 , A 3 , ...) Multi-variate NL map

≈ X k( F ) ( D C , A1 , 0, 0, 0, ...) Simpler NL map

+ Linear non-analytic map (S ) (T ) * [ X ( D C , A ) A + X ( D C , A ) A ∑ kj 1 j kj 1 j ]

X-parameter Experiment Design & Identification -3f0

-2f0

-f0

DC

f0

2f0

aj2*

3f0

4f0

5f0

aj2

X i(3,T )j 2 ⋅ a*j 2 X i(3,S )j 2 ⋅ a j 2

There are two contributions at each harmonic From different orders in NL conductance of driven system

5 f 0 − f1

f 0 + f1

Be , f = X ef( F ) (| A11 |) P f + ∑ X ef( S,g)h ( A11 ) P f −h ⋅ agh + ∑ X ef(T,g)h ( A11 ) P f + h ⋅ a*gh g ,h

g ,h

P = e jϕ ( A11 )

Scattering Parameters – Nonlinear Systems X-parameters bij = X ij( F ) ( a11 ) P j +

∑ (X

(S ) ij , kl

( a11 ) P j −l ⋅ akl + X ij(T,kl) ( a11 ) P j +l ⋅ akl* )

k ,l ≠ (1,1)

Definitions • i = output port index • j = output frequency index • k = input port index • l = input frequency index

Description • The X-parameters provide a mapping of the input and output frequencies to one another.

X-Parameters Collapse to S-Parameters in Linear Systems By definition, P =

bij = X ij( F ) ( a11 ) P j +

∑ (X

(S ) ij , kl

a1 a1

( a11 ) P j −l ⋅ akl + X ij(T,kl) ( a11 ) P j +l ⋅ akl* )

k ,l ≠ (1,1)

For small |a11| (linear), XT terms go to 0. Cross-frequency terms also go to 0

bij = X ij( F ) ( a11 ) P j +

l= j k ,l ≠ (1,1)

b1 = S11a1 + S12 a2 b2 = S21a1 + S22 a2 Definitions • i = output port index • j = output frequency index • k = input port index • l = input frequency index

∑ (X

b1 = S11 a1 P + S12 a2 b2 = S21 a1 P + S22 a2 For small |a11| (linear), XF terms go to Si1·|a11|, and XS terms are equal to linear S parameters

(S ) ij , kl

P j −l ⋅ akl )

Consider fundamental frequency (j = 1). Harmonic index is no longer needed.

bi = X i( F ) ( a11 ) P + ∑ ( X ik( S ) ⋅ ak ) k ≠1

Assume 2 port (i and k = 1 -> 2)

b1 = X 1( F ) ( a11 ) P + X 1(2S ) ⋅ a2 b2 = X 2( F ) ( a11 ) P + X 2(2S ) ⋅ a2

Example: Fundamental Component (S ) (T ) 2 * B 21 ( A11 ) = X 2( 1F ) ( A11 ) P + X 21 ( A ) A + X ( A ) P A , 21 11 21 11 21 2 1, 21

(S ) (S ) (T ) B21 ( A11 ) = X 21,11 ( A11 ) A11 + X 21,21 ( A11 ) A21 + X 21,21 ( A11 ) P 2 A2*1

dB

40

(S ) X 21,11

(S ) X 21,11 ( A11 ) → s21 | A11 | → 0

20 (S ) X 21,21

0

(S ) X 21,21 ( A11 ) → s22 | A11 |→ 0

-20 -40 -60

-25

X

-20 -15 -10

(T ) X 21,21 ( A11 ) → 0

(T ) 21,21

|A11| (dBm)

-5

| A11 |→ 0

0

5

10

Reduces to (linear) S-parameters in the appropriate limit

X-parameter Experiment Design & Identification Ideal Experiment Design E.g. functions for Bpm (port p, harmonic m) (F ) (S ) m−n (T ) m+n * B pm = X pm ( A11 ) P m + X pm ( A ) P A + X ( A ) P Aqn , qn 11 qn pm , qn 11 Perform 3 independent experiments with fixed A11 using orthogonal phases of A21

output Bpm

input Aqn

(0) (F) Bpm = X pm ( A11 ) Pm

Im

Im (1) ( F) Bpm = Xpm ( A11 ) Pm + Xpm(S),qn ( A11 ) Pm−n Aqn(1) + X(pmT),qn ( A11 ) Pm+n Aqn(1)*

Re Re

(F ) m (S ) m − n (2) (2)* B (2) Aqn + X (pmT ),qn ( A11 ) P m + n Aqn pm = X pm ( A11 ) P + X pm , qn ( A11 ) P

X-parameter Application Flow Automated DUT X-params measured on NVNA

Simulator

Application creates data-specific instance Compiled PHD Component simulates using data

NVNA

PHD instances v1 I_Probe i1

R R11 R=50 Ohm DC_Block DC_Block1

MCA_ZFL_11AD Connector MCA_ZFL_11AD_1 X1 fundamental_1=fundamental

v2 I_Probe i2 MCA_ZX60_2522 MCA_ZX60_2522_1 fundamental_1=fundamental

R R1 R=25 Ohm

DC_Block DC_Block2

V_1Tone SRC14 V=polar(2*A11N,0) V Freq=fundamental

MDIF File

Data-specific simulatable instance Compiled PHD component

Harmonic Bal: Simulation and Design 76

25

75 20 74 15

.

73

.

DUT

Φ Ref

magnitude & phase of harmonics, frequency dep. and mismatch

72

10

71 5

70 69

0 -30

Envelope:

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-30

-4

-28 -26 -24 -22 -20 -18

-16

-14

-12

-10

-8

-6

-4

-16

-14

-12

-10

-8

-6

-4

-16

-14

-12

-10

-8

-6

-4

.

. 10

-115

0

-120

-10

.

-125

-20

-130

-30

20

-135

-40

10

-140 -30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-30 -28 -26

-24

-22

-20

-18

-30

-24

-22

-20

-18

.

0

-20

10

14

0

12

-10

10

-20

8

-30

.

-10 .

.

Measure X-Parameters

Accurately simulate NB multi-tone or complex stimulus

-40

-30

2

-60

0

-70

-15

-10

-5

0

5

10

15

20

-2 -30

-28

-26

-24

-22

-20

-18

-16

.

.

6 4

-50

-40

-14

-12

-10

-8

-6

-4

-28

-26

.

Measurement on the NVNA

Switching from general measurements to X-parameter measurements is as simple as selecting “Enable X-parameters” Measuring X-parameters for 5 harmonics at 5 fundamental frequencies with 15 power points each (75 operating points) can take less than 5 minutes DC bias information can be measured using external instruments (controlled by the NVNA) and included in the data

PHD Design Kit

The MDIF file containing measured X-parameters is imported into ADS by the PHD Design Kit, creating a component that can be used in Harmonic Balance or Envelope simulations.

Measurement-based nonlinear design with X-parameters ZFL-AD11+ Source

11dB gain, 3dBm max output power

R R11 R=50 Ohm DC_Block DC_Block1 V_1Tone SRC14 V=polar(2*A11N,0) V Freq=fundamental

v1 I_Probe i1

Connector 80 ps delay

ZX60-2522M-S+ 23.5dB gain, 18dBm max output power

v2 MCA_ZFL_11AD Connector MCA_ZFL_11AD_1 X1 fundamental_1=fundamental

I_Probe i2

MCA_ZX60_2522 MCA_ZX60_2522_1 fundamental_1=fundamental

DC_Block DC_Block2

Load

R R1 R=25 Ohm

Amplifier Component Models from individual X-parameter measurements

Results Cascaded Simulation vs. Measurement Red: Cascade Measurement Blue: Cascaded X-parameter Simulation Light Green: Cascaded Simulation, No X(T) terms Dark Green: Cascaded Models, No X(S) or X(T) terms (b2NoST[::,2]-b2ref[::,2])/b2ref[::,2]*100 (b2NoT[::,2]-b2ref[::,2])/b2ref[::,2]*100 (b2[::,2]-b2ref[::,2])/b2ref[::,2]*100

Fundamental Phase unwrap(phase(b2NoST[::,1])) unwrap(phase(b2NoT[::,1])) unwrap(phase(b2ref[::,1])) unwrap(phase(b2[::,1]))

76

74

72

70

68

66 -30

-28

-26

-24

-22

-20

-18

-16

Pinc Pincref

-14

-12

-10

-8

-6

-4

Second Harmonic % Error 100

80

60

40

20

0 -30

-28

-26

-24

-22

-20

-18

-16

Pinc

-14

-12

-10

-8

-6

-4

Large-mismatch capability (load-pull) Full Nonlinear Dependence on both A1 & A2 [13]

B ik = X

(F ) ik

Terms linear in the ( A11 , A21 , 0, 0, ...) +remaining components

Mismatched Loads: 0 ื |ˁ| ื 1

Fundamental Phase

Fundamental Gain 10.5

160

10.0

155

9.5 150

9.0

145

8.5 8.0

140

7.5 135

7.0 130

6.5 -30

-25

-20

-15

-10

-5

0

5

10

Pinc

-30

-25

-20

-15

-10

-5

0

Pinc

Fundamental frequency: 4 GHz PHD Behavioral Model (solid blue)

Circuit Model (red points)

5

10

Large-mismatch capability (load-pull) Mismatched Loads: 0 ื |ˁ| ื 1 Magnitude

Phase

20

-100 -120

0

-140

Second Harmonic

-160

-20

-180 -40

-200 -220

-60

-240 -80

-260 -30

-25

-20

-15

-10

-5

0

5

10

-30

-25

-20

-15

Pinc

-10

-5

0

5

10

-5

0

5

10

Pinc

20

60

0

40 20

-20

0

Third Harmonic

-40 -20 -60

-40

-80

-60

-100

-80

-120

-100

-30

-25

-20

-15

-10

-5

0

5

10

Pinc

-30

-25

-20

-15

-10

Pinc

Fundamental frequency: 4 GHz PHD Behavioral Model (solid blue)

Circuit Model (red points)

Large-mismatch capability (load-pull) Mismatched Loads: 0 ื |ˁ| ื 1

Dynamic Load-lines (green for matched case) 0.08

0.06

0.04

0.02

Port 2 Current

0.00

Port 2 Voltage

0

1

2

3

4

6

5

6

0.08

5 0.06

4 3

0.04

2 0.02

1 0

0.00

0

100

200

300

400

500

time, psec

0

100

200

300

400

time, psec

Fundamental frequency: 4 GHz PHD Behavioral Model (solid blue)

Circuit Model (red points)

500

PHD-Simulated vs Load-Pull Measured Contours & Waveforms from Load-dependent X-parameters (WJ transistor) Red: Load-pull data

d (blue) and Measured (red) Efficiency C

Blue: PHD model simulated Fundamental Gamma = 0.383+j*0.31 m9 m10

WJ Transistor

Measured & Simulated Waveforms 0.15 0.10

5

0.05 0 0.00 -5

-0.05 -0.10

-10 0.0

0.2

0.4

0.6

time, nsec

0.8

1.0

SimulatedCurrent, A MeasuredCurrent

Power Delivered

SimulatedVoltage, V MeasuredVoltage

10

m1 m2

Efficiency

Amplifier with bias; standard compliant wideband modulation source; Parametric sweep of A) source power (dBm), & B) electrical distance (degrees) from output of amp to 2nd harmonic notch filter [fundamental = 1GHz] ENVELOPE

PARAMETER SWEEP ParamSweep Sweep_pwr SweepVar="Pavs" Start=-8 Stop=0 Step=1

Var Eqn

VAR SourcePwr Pavs=-2 _dBm

V_DC VDC Vdc=VDC

Envelope Env1 Freq[1]=RFfreq Order[1]=3 Stop=tstop Step=tstep

I_Probe IDC

IS-95 CDMA Source

TLIN TL1 Z=50.0 Ohm E=T_line F=2 GHz

PARAMETER SWEEP ParamSweep Sweep_Tline SweepVar="T_line" Start=90 Stop=360 Step=30 Var VAR Eqn

VAR2 T_line=360

Harmonic Filter

Vin PtRF_CDMA_IS95_REV SRC6 F0=RFfreq Power=dbmtow(Pavs) Z=50 Ohm Num=1

Vout DC_Block DC_Block2

ZX60_2522M_DC_PHD ZX60_2522M_DC_PHD_1 fundamental_1=_freq1

s_harmfilter X1

DC_Block DC_Block1

Term Term1 Num=1 Z=50 Ohm

Gain in dB +21 to +24 in 0.5 dB steps (g_contour) constant GAIN contours of T-line length -vs- Pavs src pwr 360 340

Eqn gmin=21 Eqn gmax=24 Eqn gstp=0.5

level=22.000, number=3

320 300 280

Tline length to filter

260 240

level=21.000, level=21.500, number=2 number=2 level=22.000, number=2 level=22.500, number=2

220 200

level=24.000, number=1 level=23.500, number=1 level=23.000, number=1

180 160 140 120 level=22.500, number=1

100 level=22.000, number=1

level=21.500, number=1level=21.000, number=1

80 -8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0 Pavs

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Power delivered (dBm) +14 to +23 in 1 dB steps (P_contour) constant Channel Power contours of T-line length -vs- Pavs src pwr 360

Eqn pmin=14

340

Eqn pmax=23 Eqn pstp=1

320 300

level=19.000, number=2

280

Tline length to filter

260 240 220 level=23.000, number=1

200

level=22.000, number=1 level=21.000, number=1

180

level=20.000, number=1

160

level=19.000, number=1

140 120 100 level=14.000, number=1 level=15.000, number=1 level=16.000, number=1 level=17.000, number=1

80 -7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

Pavs

-3.0

-2.5

-2.0

level=18.000, number=1

-1.5

-1.0

-0.5

0.0

Power Added Efficiency (%) 6% to 36% in 2% steps (PAE_contour) constant (percent) PAE contours of T-line length vs Pavs src power 360

Eqn pae_min=6

340

Eqn pae_max=36

320

Eqn pae_stp=2

300

level=22.000, number=2 level=20.000, number=2

280

level=18.000, number=3

Tline length to filter

260 240 220 200

level=36.000, level=34.000, level=32.000, level=30.000, level=28.000, level=26.000, level=24.000,

180

number=1 number=1 number=1 number=1 number=1 number=1 number=1

level=22.000, number=1

160

level=20.000, number=1 level=18.000, number=2

140

level=16.000, number=2

120 100

level=6.000, number=1 level=8.000, number=1 level=10.000, number=1 level=12.000, number=1 level=14.000, number=1 level=16.000, number=1 level=18.000, number=1

80 -8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0 Pavs

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Summary X-parameters are a mathematically correct superset of Sparameters for nonlinear devices under large-signal conditions – Rigorously derived from general PHD theory; flexible, practical, powerful

X-parameters can be accurately measured by automated set of experiments on the new Agilent NVNA instrument Together with the PHD component, measured X-parameters can be used in ADS to design nonlinear circuits All pieces of the puzzle are available and they fit together! Nonlinear Measurements Nonlinear Modeling

Nonlinear Simulation Customer Applications

Summary New Nonlinear Vector Network Analyzer based on a standard PNA-X New phase calibration standard Vector (amplitude/phase) corrected nonlinear measurements from 10 MHz to 26.5 GHz Calibrated absolute amplitude and relative phase (cross-frequency relative phase) of measured spectra traceable to standards lab 26 GHz of vector corrected bandwidth for time domain waveforms of voltages and currents of DUT Multi-Envelope domain measurements for measurement and analysis of memory effects X-parameters: Extension of Scattering parameters into the nonlinear region providing unique insight into nonlinear DUT behavior X-parameter extraction into ADS PHD block for nonlinear simulation and design