solid state lighting

Solid State Lighting Michael Shur Rensselaer Polytechnic Institute ECSE, Physics and Broadband Center http://nina.ecse...

0 downloads 65 Views 2MB Size
Solid State Lighting Michael Shur

Rensselaer Polytechnic Institute ECSE, Physics and Broadband Center http://nina.ecse.rpi.edu/shur

From a Torch to Blue and White LEDs and to Solid State Lamps Blue LED on Si, Courtesy of SET, Inc. http://nina.ecse.rpi.edu/shur/

1

Research Areas • Plasma wave electronics

– THz resonant emission and detection

• Wide band gap materials and devices

– MOSHFET, UV LEDs, SAW, polarization, transport

• Sensitive skin

– Flexible substrates, nano gauges, electrotextiles, TFTs, OTFTs

• Novel device CAD

– AIM-Spice, opto/thermo/micro CAD

• Lab-on-the-WEB

– http://nina.ecse.rpi.edu/shur/remote

• Broadband center

http://nina.ecse.rpi.edu/shur

• Solid state lighting

http://nina.ecse.rpi.edu/shur/

2

Talk Outline • History of General and Electric Lighting • Advantages of Solid State Lighting • Introduction to Photometry and Colorimetry • Optimization of Solid State Lamps • Emerging applications • Vision http://nina.ecse.rpi.edu/shur/

3

Lighting – prerequisite of human civilization • 500,000 years ago- first torch • 70,000 years ago – first lamp (wick) • 1,000 BC – the first candle • 1772 - gas lighting • 1784 Agrand lamp the first lamp relied on research (Lavoisier) • 1826 -Limelight - solidstate lighting device • 1876 – Yablochkov candle • 1879 – Edison bulb

Yablochkov candle (1876)

Agrand lamp

Limelight

Edison bulb (1879)

http://nina.ecse.rpi.edu/shur/

4

History of Electric Lighting • 1876 Pavel Yablochkov. First electric lighting device • 1879 Thomas Alva Edison. Incandescent lamp • 1897 Nernst. Filament made of cerium oxide-based solid electrolyte. • 1900 Peter Cooper Hewitt. Mercury vapor lamp. 1903. A. Just and F. Hanaman. Tungsten filament • 1904 Moor. Discharge lamps with air • 1907 H. J. Round. First LED (SiC) • 1910 P. Claude. Discharge lamps with inert gases • 1938 GE and Westinghouse Electric Corporation Fluorescent lamps.

http://nina.ecse.rpi.edu/shur/

5

First LED (1907)

http://nina.ecse.rpi.edu/shur/

6

Lighting in James Joyce Room Shakespeare Hotel, Bernadinu 8/8 Vilnius, Lithuania (09/05/02)

Incandescent

First LED stamp

Fluorescent http://nina.ecse.rpi.edu/shur/

7

Benefits of LED Lighting An improvement of luminous efficiency by 1% saves 2 billions dollars per year. 10

100

8

80

6

60

4

40

2 0 2000

20 2010

2020 Year

Cost Savings $USB/yr

LED Penetration(%)

120 “High Investment Model”

2030

“Low Investment Model”

Data from R. Haitz, F. Kish, J. Tsao, and J. Nelson Innovation in Semiconductor Illumination: Opportunities for National Impact (2000)

http://nina.ecse.rpi.edu/shur/

8

Solid State Lighting 100 80 60

Efficiency (lm/W)

40 20 0 Incandescent

Halogen

Fluorescent

White LED (2000)

White LED (2010)

120 100 80

Lifetime (1000 h)

2002

60 40 20 0 Incandescent

Halogen

Fluorescent

White LED (2000)

White LED (2010)

http://nina.ecse.rpi.edu/shur/

9

Challenges of Solid State Lighting • Reduce cost • Improve efficiency of light generation • Improve efficiency of light extraction • Improve quality of light http://nina.ecse.rpi.edu/shur/

10

Cost of Light

Fluorescent tubes: dollar per lumen 0.01 White LED: dollar per lumen 0.25 (Lumileds) 0.66 (Nichia)

•Incandescent bulbs: Dollar per lumen 1/1100 Re LED: dollar per lumen0.1

http://nina.ecse.rpi.edu/shur/

11

Evolution of lm/package and cost/lm for red LEDs

After Roland Haitz Agilent Technologies

http://nina.ecse.rpi.edu/shur/

12

Challenges in light extraction

epoxy ne

ns

Conventional LED chip grown on an absorbing substrate.

θc active layer

absorbing substrate

(b) High-brightness LED chip design with thick transparent window layers Light escapes through 6 cones

From A. Žukauskas, M. S. Shur, R. Gaska, MRS Bull. 26, 764, 2001. http://nina.ecse.rpi.edu/shur/

13

Progress in AlInGaP LEDs

After http://www.lumileds.com/technology/tutorial/slide2.htm http://nina.ecse.rpi.edu/shur/

14

Light Extraction : TIP-LEDs from LumiLeDs

Lum en/w att

1000 high pre ssu re so diu m 1 kW

TIP-LED

fluo res cen t 1 W m ercury vapor 1 kW

100

ha lo ge n 30 W Standard A lG a In P /G a P

10

tu ng ste n 6 0 W re d f ilt e r e d tu ng ste n 6 0 W

Top contact

1

550

600

650

700

750

P e ak w av elen gth (n m )

After M.O. HOLCOMB et al. (2001), Compound Semiconductor 7, 59, 2001). http://nina.ecse.rpi.edu/shur/

15

Photometry: Eye sensitivity Photopic vision (cones) @ High Illumination

0

Relative Sensitivity

10

V'(λ)

V(λ)

-1

10

Scotopic vision (rods) @ Low illumination

-2

10

-3

10

-4

10

-5

10

400

500

600

Wavelength (nm)

700

800

Cones are red, green, and blue http://nina.ecse.rpi.edu/shur/ 16

Radiometry and Photometry Watt W/nm

Photopic vision eye sensitivity

Φυ = 683 lm W × ∫ Φ e V (λ ) dλ Luminous flux

W/nm Wavelength (nm)

Iυ = dΦυ dω = 683 lm W × ∫ I e V (λ ) dλ Luminous intensity 1/60 of the luminous intensity per square centimeter of a blackbody radiating at the temperature of 2,046 degrees Kelvin

(Candela = lm/sr – SI unit) Luminous efficiency: power into actuation of vision (lm/W) http://nina.ecse.rpi.edu/shur/

17

How much light do you need? Type of Activity

Illuminance (lx =lm/m2)

Orientation and simple visual tasks (public spaces)

30-100

Common visual tasks (commercial, industrial and residential applications) Special visual tasks, including those with very small or very low contrast critical elements

300-1000 3,000-10,000

http://nina.ecse.rpi.edu/shur/

18

Colorimetry: Chromaticity Coordinates 1931 CIE color matching functions: purple, green, and blue

X = ∫ x (λ ) S (λ ) dλ Y = ∫ y (λ ) S (λ ) dλ

2.0

_

z

blue

1.5

_

x

green _ y purple

1.0

0.5

0.0 350 400 450 500 550 600 650 700 750

Wavelength (nm)

Z = ∫ z (λ ) S (λ ) dλ

X x= X +Y + Z Y y= X +Y + Z

x+y+z = 1 http://nina.ecse.rpi.edu/shur/

19

Color Coordinates [Y] 1.0

520 [G]

530

0.8

540

510

560

0.6 500 580 A

0

Is it really that bad? Just remember: White is Black!

640 700

0

,0

Red

[R]

00

10

00

C

4 ,0

490

600 620

2, 00 0

D 65 E B

3 ,0 0

0.4

6,

y Chromaticity Coordinate

Planckian locus (black body radiation)

Green

00

0.2 480

[B]

[Z]

0.0 0.0

Blue 460 400

0.2

0.4

0.6

0.8

[X] 1.0

x Chromaticity Coordinate http://nina.ecse.rpi.edu/shur/

20

Color Mixing •Red, green, blue appear as white •Red and blue appear as magenta •Green and blue give cyan 0.8 •Red and green give yellow

520 530 540

y Chrom aticity Coordinate

510

YG

G 560

0.6 500

Y

580

0.4

600

O

C(W )

620 640

490

700

0.2 B

480

P

0.0 0.0

460

400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x Chromaticity Coordinate http://nina.ecse.rpi.edu/shur/

21

Color Rendering 1.0 0.8

Light bluish green

Light grayish red

General Color Rendering Index Ra (CRI)

0.6 0.4 0.2 0.0 1.0 0.8

Dark grayish yellow

Light blue

Strong yellow green

Light violet

integrates the reflectivity data for 8 specified samples Special color rendering

0.6

Reflectivity

0.4 0.2 0.0 1.0 0.8

indices,

0.6 0.4 0.2 0.0 1.0 0.8

Moderate yellowish green

Light reddish purple

0.6 0.4 0.2 0.0

400

500

600

700

400

500

Wavelength (nm)

600

700

refer to six additional test samples Ra varies up to 100 100 is the best. Ra might be negative http://nina.ecse.rpi.edu/shur/

22

Generating White Light Phosphor-conversion white LED

Multichip white LED

Phosphor layer

InGaN chip

http://nina.ecse.rpi.edu/shur/

23

How to Optimize Solid State lamp: maximize the objective function (K )



(λ1 , … , λ n , I 1 , … , I n ) = σK + (1 − σ )R a

where σ is the weight that controls the trade-off between the efficacy, K, and color rendering index, Ra λ1, λ2, λ3,… and I1, I2, I3 are the peak wavelengths and relative powers of the primary LEDs, respectively For a dichromatic lamp (two primary LEDs), the optimal solutions can be obtained by simple searching within the wavelength space involving complementary pairs of blue and yellow-green LEDs. . http://nina.ecse.rpi.edu/shur/

24

481/580 nm

20

489/591 nm 0 380/569 nm -20

450/571 nm

-40

2 primary LEDs 496/635 nm

-60 0

100

200

300

400

Luminous Efficacy (lm/W)

General Color Rendering Index

General Color Rendering Index

Optimization of Polychromatic Solid-State White Lamps 100 456/537/601 nm

464/543/613 nm

80 454/543/597 nm

60 40 20

3 Primary LEDs

0 300

350

400

Luminous Efficacy (lm/W)

http://nina.ecse.rpi.edu/shur/

25

99.5 99 98

5

4

General CRI

95 90

2 LEDs 3 LEDs 4 LEDs 5 LEDs

3

80 70 60 50 40 30 20 10 5

2 320

340

360

380

400

420

Luminous Efficacy (lm/W)

440

Peak wavelength (nm)

General CRI, Luminous Efficacy, and LED Wavelengths of Optimized Polychromatic Lamps 660 640 620 600 580 560 540 520 500 480 460 440 420

2 LEDs 3 LEDs 4 LEDs 5 LEDs

2

5 10 20 30 405060 70 80 90 95 98 9999.5

General CRI

The 30-nm line widths (A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska and M. S. Shur, Optimization of White Polychromatic Semiconductor Lamps, Appl. Phys. Lett. 80, 234 (2002)). Crosses mark points that are suggested for highest reasonable CRI for each number of primary sources. http://nina.ecse.rpi.edu/shur/

26

General color rendering index and efficacy for optimized polychromatic solid-state lamps (color temperature TS = 4870 K)

Type of lamp

Ra

Dichromatic Trichromatic Quadrichromatic Quintichromatic

3 85 98 99

Efficacy (lm/W) 430 366 332 324

From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

27

Peak wavelengths of primary LEDs (nm) for optimized polychromatic solid-state lamps (color temperature TS = 4870 K) blue

cyan green

452 453 454 448

509 493

537 531

yellow-green 571 561 572

amber to red 604 619 623

2 3 4 5

From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A.Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

28

Model spectra of white emission from quadrichromatic lamp (CT = 4870 K) for different points on optimal boundary of the (K,Ra) phase distribution

Power (arb. units)

K=332 lm/W Ra=98.5

AlGaInN

AlGaInP

K=351 lm/W Ra=95

K=362 lm/W Ra=90

K=370 lm/W Ra=85

400

450

500

550

600

650

Wavelength (nm)

From R. Gaska, A. Žukauskas, M. S. Shur, and M. A. Khan, "Progress in III-nitride based white light sources", (Invited paper), Volume 4776, pp. 82-96 (2002) http://nina.ecse.rpi.edu/shur/

29

Optimization depends on color temperature 99

General CRI

98

2856 K 95

90

4870 K

80 320

340

360

380

400

420

Luminous Efficacy (lm/W)

Optimal boundaries of the (K,Ra) phase distribution for quadrichromatic lamps at two color temperatures From R. Gaska, A. Žukauskas, M. S. Shur, and M. A. Khan, "Progress in III-nitride based white light sources", (Invited paper), Volume 4776, pp. 82-96 (2002) http://nina.ecse.rpi.edu/shur/

30

Luxeontm LED Combination 80

603-520-452 603-520-472

General CRI (points)

603-502-452

60

603-502-472 629-520-472

40

From theory to practice

629-520-452

20 645-520-452

0

629-502-472 645-520-472

-20 629-502-452

645-502-452

645-502-472

-40 16

18

20

22

24

26

Efficiency (lm/W) From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

31

Four LED Segment 80

) (p

78

77

0-5

-5

2 3-5

603/520/452

-4 02

3 60

7 -4 0 2

52

60

76

4 2-

629-603-520-452

645-603-520-452

79

52

75 19.8

20.0

20.2

20.4

20.6

20.8

21.0

Efficiency (lm/W) From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

32

Why do we need quadrichromatic lamp? 603-520-452-nm trichromatic 645-603-520-452-nm quadrichromatic

80 60 40 20

R14 Moderate olive green

R13 Light yellowish pink

R12 Strong blue

R11 Strong green

R10 Strong yellow

R9 Strong red

R8 Light reddish purple

R7 Light violet

R6 Light blue

R5 Light bluish green

R4 Moderate yellowish green

-60

R3 Strong yellow green

-40

R2 Dark grayish yellow

-20

R1 Light grayish red

0

Ra General

Color rendering (points)

100

From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A.Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

33

U of V/SET/RPI Versatile Solid State Lamp Control unit PC

USB interface module

Lighting fixture Photodiode sensor

ADC Current regulators

Microcontroller

LED array

Power supply

From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

34

High-power LED based Versatile White Multichip Lamp

http://nina.ecse.rpi.edu/shur/

35

VSSL User Interface

From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

36

Receptor sensitivity (arb. units) Spectral power density (arb. units)

Color Temperature Control in a Quadrichromatic Source of White Light 100

(a )

4.0

L -ty p e

10 1

3.5

0 .1

M -ty p e

0 .0 1 2856 K

(b )

4870 K

(c )

5800 K

(d )

6504 K

Power per 3000 lm (W)

S -ty p e

3.0

603 nm

2.5 2.0 1.5 1.0

645 nm

452 nm

0.5

(e )

0.0 400

520 nm

500

600

W a w e le n g th (n m )

700

3000

4000

5000

6000

Color temperature (K)

From A. Zukauskas, R. Vaicekauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, and R. Gaska, Quadrichromatic white solid-state lamp with digital feedback, SPIE 5187-24 http://nina.ecse.rpi.edu/shur/

37

Applications of U of V/RPI/SET quadrichromatic Versatile Solid-State Lamp: Phototherapy of seasonal affective disorder at Psychiatric Clinic of Vilnius University

• Seasonal affective disorder (SAD) strikes some people in the northern latitudes • Bright white light is known to counteract SAD • The exact mechanism of treatment is not known

http://nina.ecse.rpi.edu/shur/

38

Preliminary results for SAD Treatment A pilot investigation of color temperature selection was carried out on healthy subjects. Preliminary results showed that subjects with the emotional scale exhibiting anxiety required light with a higher color temperature. http://nina.ecse.rpi.edu/shur/

39

SEMICONDUCTOR MATERIALS SYSTEMS FOR HIGH BRIGHTNESS LEDs 2000

AlN C ZnS GaN ZnO SiC(4H) SiC(6H) ZnSe CdS AlP CdO SiC(3C) GaP ZnTe AlAs InN CdSe AlSb CdTe GaAs InP Si GaSb Ge InAs InSb 0

800 600 500

400

300

200 1

UV

IR 1

2

3

4

5

6

7

Band Gap Energy (eV) http://nina.ecse.rpi.edu/shur/

40

6.0

350

5.0

300

250 4.0 Al Ga N 0.3 0.7 3.0

0.0

0.2 0.4 0.6 0.8 Al mole fraction

200 1.0

Emission Wavelength (nm)

Band gap (eV)

III-Nitride AlxGa1-xN UV Emitters require high Al molar fraction (X) AlGaN heterostructures involve strain and polarization: Strain Energy Band Engineering •Quaternary •Strain relief via superlattice buffers •MEMOCVD •Non-polar substrates

•Homoepitaxy Thermal and current management http://nina.ecse.rpi.edu/shur/

41

Strain Energy Band Engineering Use strain controlling superlattices

Use AlGaInN - quaternary

Band Offset (eV)

Thickness, 60 nm 3

50

2

40

1 0

30

AlGaN 0.2

0.4

0.6

1

0.8

InGaN

-1 -2

20 10 0

Lattice mismatch (A)

0

0.2

0.4

0.6

0.8

1

Al Mole Fraction 0.1

AlGaN

0 0.2

0.4

0.6

0.8

-0.1 -0.2

InGaN

Critical thickness as a function of Al mole fraction in AlxGa1-xN/GaN: superlattice (solid line), 1 SIS structure (dashed line). From A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81 (9), 6332-6338 (1997)

-0.3 -0.4

Molar Fraction of Al and In http://nina.ecse.rpi.edu/shur/

42

PL Intensity (arb. units)

5 nm Al0.5Ga0.5N

20 nm AlN

AlN epilayer

Bulk AlN substrate

substrate

SiC substrate

240

260

280

300

Luminescence intensity (arb. units)

AlN/AlGaN Room Temperature Photoluminescence PL from edge @ L = 400 µm PL from edge @ L = 440 µm spontaneous PL

320

Wavelength (nm)

PL signal from MQWs on bulk AlN is approximately 28 times stronger compared to the structure grown over SiC. From R. Gaska, C. Chen, J. Yang, E. Kuokstis, A. Khan, G. Tamulaitis, I. Yilmaz, M. S. Shur, J. C. Rojo, L. Schowalter, . Deep-ultraviolet emission of AlGaN/AlN quantum wells on bulk AlN, accepted at APL

240

260

280

300

Wavelength (nm)

Stimulated emission at 258 nm. From R. Gaska, C. Chen, J. Yang, E. Kuokstis, A. Khan, G. Tamulaitis, I. Yilmaz, M. S. Shur, J. C. Rojo, L. Schowalter, . Deep-ultraviolet emission of AlGaN/AlN quantum wells on bulk AlN, accepted at APL

http://nina.ecse.rpi.edu/shur/

43

Pulsed Atomic Epitaxy: A representative growth unit cell of PALE. New Development – MEMO-CVD

Time, sec.

http://nina.ecse.rpi.edu/shur/

44

Ultimate heteroepitaxy: blue LED on Si

Courtesy of SET, Inc. http://nina.ecse.rpi.edu/shur/

45

USC/SET UV LED for solid state lighting and homeland security

40

Current, mA

340 nm LED 30 325 nm LED 20

280 nm LED

10 0

0

2

278 nm

Normalized intensity, a.u.

50

4

6

8

10

From: 9nm

240 260 280 300 320 340 360 380 400 420 440

EQE, %

0.2

0

200 400 600 800 1000

Current, mA

5

Output power, mW

Power, mW

340 nm 325 nm 280 nm

0.4

0.0

10

10.2nm

Wavelength, nm

0.6

15

8.5nm

RT 500 ns 10 kHz

Voltage, V 20

325 nm 338 nm

10

1

A. Chitnis, V. Adivarahan, J. Zhang, M. Shatalov, S. Wu, J. Yang, G. Simin, M. Asif Khan, X. Hu, Q. Fareed, R. Gaska, and M. S. Shur, Milliwatt power AlGaN quantum well deep ultraviolet Light emitting diodes, physics status solidi (2003) To be published

pulse 1A

dc 100 mA

0.1 0

0

200

400

600

Current, mA

800

1000

270 280 290 300 310 320 330 340 350

Wavelength, nm http://nina.ecse.rpi.edu/shur/

46

Sub-milliwatt power 285 nm Emission UV LED on Sapphire. 30 14

Rs~70-80 Ω

20

10

15 10

p-AlGaN

5

SQW

0

RT dc

12

Power, µW

p+-GaN

Current, mA

25

8 6 4 2

0

2

4

n+-AlGaN buffer

6

0

8

0

40

60

80

100

400

500

Current, mA

Voltage, V

SL

0.20

LT-AlN

RT pulse 500 ns, 0.5%

285.5 nm 200 mA pulsed pumping 500 ns, 10 kHz

Power, mW

Intensity, a.u.

0.15

Sapphire

20

0.10

0.05

0.00 260

280

300

320

340

360 380

Wavelength, nm

400 420

0

100

200

300

Current, mA

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, AlGaN Single Quantum Well Light Emitting Diodes with Emission at 285 nm, Appl. Phys. Lett., Vol. 81, Issue 19, pp. 3666-3668 (2002) http://nina.ecse.rpi.edu/shur/

47

Solid State Lighting Funding

Nothing comes from nothing (Fresco at Vilnius University) http://nina.ecse.rpi.edu/shur/

48

US DOE Mission Statement Develop viable methodologies to conserve 50% of electric lighting load by the year 2010 From Status Report: Edward D. Petrow DOE’s Solid State Lighting Initiative For General Illumination Photonics West January 24, 2001 San Jose, CA

San Francisco, California, June 24, 2002 U.S. Secretary of Energy Spencer Abraham told the United States Energy Association that his department is exploring the use of solid-state lighting utilizing Light Emitting Diodes (LEDs) as part of its ongoing campaign to reduce energy usage in the U.S. He displayed a Luxeon LED light source from Lumileds Lighting and called high-power LEDs "a revolutionary technological innovation that promises to change the way we light our homes and businesses."

White 5 W 120 lm 5500 K color temperature Lumileds Luxeon

http://nina.ecse.rpi.edu/shur/

49

How energy saving will be achieved R&D Topic Area

% of Goal

New Light Sources

25%

Solid State Lighting

45%

Advanced Electronics & Integrated Controls

15%

Improved Fixtures & Market Penetration

10%

Human Factors

5%

From Status Report: Edward D. Petrow DOE’s Solid State Lighting Initiative For General Illumination, Photonics West January 24, 2001 San Jose, CA http://nina.ecse.rpi.edu/shur/

50

DOE Energy Saving Projection 8 7 6

Quads, PEC

Baseline

5

Low SSL Penetration

4

High SSL Penetration

3 2 1

Initial Projection

0 2000

2004

2008

2012

2016

2020

Note: The projection assumes a constant primary energy consumption conversion ratio of 3.22 from end-use electricity to PEC. (source: BTS Core Databook, 2000)

From Status Report: Edward D. Petrow DOE’s Solid State Lighting Initiative For General Illumination,

Photonics West January 24, 2001 San Jose, CA

http://nina.ecse.rpi.edu/shur/

51

LED Applications

http://nina.ecse.rpi.edu/shur/

52

LED Applications Signals and Displays •POWER SIGNALS •Traffic Lights •Automotive Signage •Miscellaneous Signage •DISPLAYS •Alphanumeric Displays •Full Color Video Displays

http://nina.ecse.rpi.edu/shur/

53

LED Applications (Biomedical) • MEDICAL APPLICATIONS

– Phototherapy of Neonatal Jaundice – Photodynamic Therapy – Photopolymerization of Dental Composites

– Phototherapy of Seasonal Affective Disorder • PHOTOSYNTHESIS – Plant Growing – Photobioreactors

• OPTICAL MEASUREMENTS

– Fluorescent Sensors – Time-Domain and Frequency-Domain Spectroscopy – Other Optical Applications http://nina.ecse.rpi.edu/shur/

54

LED-Based Fluorimetry (b)

(a) LED

PD C LED

L

FF

EF

FF

EF

L

C

(c)

LED

C

EF

PD FF

FC L

PD

L

•Design versatility •Low-noise response •Electronic modulation •Low heat production •Small dimensions •Longevity •Durability •Low cost

http://nina.ecse.rpi.edu/shur/

55

UV-LED Based Fluorimeter with Integrated Lock-in Amplifier

http://nina.ecse.rpi.edu/shur/

56

LED Applications - Lighting • ILLUMINATION – Local Illumination – General Lighting

Parabolic Reflector

Cone Reflector Fresnel Lens LED array

LED Floodlight (after A.García-Botella et al., J. IES 29, 135, 2000) http://nina.ecse.rpi.edu/shur/

57

General Lighting http://nina.ecse.rpi.edu/shur/

58

Solid State Lighting - To probe further: Book A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid State Lighting, John Wiley and Sons, 2002, ISBN: 0471215740 Reviews/chapters: A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, M. S. Shur and R. Gaska, Optimization of white all-semiconductor lamp for solid-state lighting applications, in in Frontiers in Electronics: Future Chips Proceedings of the 2002 Workshop on Frontiers in Electronics (Wofe-02) St. Croix, Virgin Islands, World Scientific Pub Co; (January 15, 2003), R. Gaska, A. Žukauskas, M. S. Shur, and M. A. Khan, Progress in III-nitride based white light sources, in SPIE Proceedings, to be published (Invited paper) A. Žukauskas, M. S. Shur, and R. Gaska, Solid State Lighting, in: Future Trends in Microelectronics: The Nano Millennium, New York: Wiley, 2002, S. Luryi, J. M. Xu, and A. Zaslavsky, eds. A. Žukauskas, M. S. Shur, and R. Gaska, Light-emitting diodes: progress in solid-state lighting, MRS Bulletin, pp. 764-769, October (2001) A. Žukauskas, M. S. Shur, R. Gaska, Solid-State Lamps, McGraw Hill Technical Encyclopedia

E-mail: [email protected]

M. Asif Khan, J. Yang, G. Simin, R. Gaska, and M. S. Shur, Strain energy band engineering approach to AlN/GaN/InN heterojunction devices, pp. 195-214, in Frontiers in Electronics: Future Chips Proceedings of the 2002 Workshop on Frontiers in Electronics (Wofe-02) St. Croix, Virgin Islands, World Scientific Pub Co; (January 15, 2003), http://nina.ecse.rpi.edu/shur/

59

Conclusion “... it is vital to know that the LED is an ultimate form of lamp, in principle and in practice, and that its development indeed can and will continue until all power levels and colors are realized.”

HOLONYAK, N., JR. (2000), “Is the light emitting diode (LED) an ultimate lamp?” Am. J. Phys. 68 (9), pp. 864-866.

http://nina.ecse.rpi.edu/shur/

60

Appendix: Math of Color Rendering

Reference source

S r (λ )→ S r (λ ) ρi (λ ), i = 1, … ,8

Test source

S k (λ )→ S k (λ ) ρi (λ ), i = 1,…,8

USC chromaticity coordinates

u = 4 x (− 2 x + 12 y + 3) , v = 6 y (− 2 x + 12 y + 3)

General color rendering index (CRI)

1 Ra = 8

8

∑ Ri i =1

http://nina.ecse.rpi.edu/shur/

61

where Ri is

{

′ − u r ) − Wri (u ri − u r )]2 + = 100 − 4.60 [Wki − Wri ]2 + 13 2 [Wki (u ki ′ − v r ) − Wri (v ri − v r )] 13 [Wki (v ki

}

2 12

2

.

W = 25Y 1 3 − 17 c = (4 − u − 10v ) v d = (1.708v + 0.404 − 1.481u ) v 10.872 + 0.404 c r c ki c k − 4 d r d ki d k ′ = u ki 16.518 + 1.481 c r c ki c k − d r d ki d k 5.520 ′ v ki = 16.518 + 1.481 c r c ki c k − d r d ki d k http://nina.ecse.rpi.edu/shur/

62

Primary Energy Consumption in Buildings by End Use (US, 1998) Unallocated

2.6 Quads (7%) From Status Report: Other Edward D. Petrow 1.3 Quads (4%) DOE’s Solid State Lighting Appliances Initiative For General Illumination 5.0 Quads (14%) Photonics West January 24, 2001 San Jose, CA

Refrigeration

Lighting 6.0 Quads (17%)

36.3 Quads Space Heating

2.4 Quads (7%)

9.4 Quads (25%)

Water Heating 4.1 Quads (11%)

1 Quad = 1015 BTU (~8x 109 gallon of gas)

Ventilation

1.2 Quads (3%)

Space Cooling 4.3 Quads (12%) http://nina.ecse.rpi.edu/shur/

Source: BTS Core Databook, August 2000, Table 1.1.7 and Industrial Building Estimate from Table 1.3.11

63

C L′

Cost of light • Estimated from C L′ 6 3 C1kWh C1Mlmh ≈ 10 + 10 the cost of the ′L ′L P τ η η L L lamp and the electric power consumed divided C L′ cost of the bulb by the amount of C1kWh price of 1 kW·h power luminous efficiency η ′L lumens produced wattage over the lifetime. PL τL lifetime of the lamp For 1 Mlm⋅h, this yields a cost http://nina.ecse.rpi.edu/shur/

64