slides ch6

Lectures on Monetary Policy, In‡ation and the Business Cycle A Model with Sticky Wages and Prices by Jordi Galí Februa...

5 downloads 163 Views 113KB Size
Lectures on Monetary Policy, In‡ation and the Business Cycle A Model with Sticky Wages and Prices

by Jordi Galí

February 2007

Based on: Erceg, Henderson and Levin. (JME, 2000) Firms Technology Yt(i) = At Nt(i)1 Z 1 1 1w Nt(i) Nt(i; j) dj

w w 1

0

Cost minimization:

Nt(i; j) = for all i; j 2 [0; 1], where Wt

Z

w

Wt(j) Wt

Nt(i) 1

1

1

Wt(j)

1

w

w

dj

0

In addition,

Z

0

1

Wt(j)Nt(i; j) dj = WtNt(i):

(1)

Optimal price setting (as in baseline sticky price model) max Pt

1 X

k p

k=0

subject to

Yt+kjt = (Pt =Pt+k ) Aggregation: where bpt

t+k (Yt+kjt )

Et Qt;t+k Pt Yt+kjt

p t p t

p

=

=

mc ct ,

Et f p

p t+1 g

log

Ct+k

p p

p

p

bpt

1 , and

(2) (1 p

p )(1 p

p)

1 1

+

p

.

Households fraction of households/trade unions adjusting nominal wage: 1 w

w

: index of nominal wage rigidity

Optimal Wage Setting max Wt

subject to:

Pt+k

1 X k=0

(

w)

k

EtfU (Ct+kjt; Nt+kjt)g

Nt+kjt = (Wt =Wt+k ) w Nt+k Ct+kjt + Et+k fQt+k;t+k+1Dt+k+1jtg Dt+kjt + Wt Nt+kjt

where Nt

R1 0

Nt(i) di.

Tt+k

Optimality condition: 1 X

(

k w ) Nt+kjt Et Uc (Ct+kjt ; Nt+kjt )

k=0

where Mw

Wt + Mw Un(Ct+kjt; Nt+kjt) Pt+k

w w

1

Complete markets: Ct+kjt = Ct+k for k = 0; 1; 2; ::: Letting M RSt+kjt 1 X k=0

(

Un (Ct+k ;Nt+kjt ) Uc (Ct+k ;Nt+kjt )

k w ) Et Nt+kjt Uc (Ct+kjt ; Nt+kjt )

Wt Pt+k

Mw M RSt+kjt

=0 (3)

=0

Full wage ‡exibility (

w

= 0):

Wt Wt = = Mw M RStjt Pt Pt Zero in‡ation steady state: W = Mw M RS P

Log-linearization (after dividing (3) by Mw M RS): wt =

w

+ (1

w)

1 X

(

w)

k

Et mrst+kjt + pt+k

(4)

k=0

where

w

log

w w

1

.

With isoelastic separable utility =) mrst+kjt = Average marginal rate of substitution:

mrst+k

mrst+kjt = mrst+k + ' (nt+kjt = mrst+k w ' (wt

ct+k + ' nt+kjt . ct+k + ' nt+k

nt+k ) wt+k )

Hence, 1 wt = 1+ =

1 1+

where bwt

w w' w w' w t

1 X k=0 1 X k=0

(

w)

k

(

w)

k

Et f

w

+ mrst+k +

Et f(1 +

w ')

w'

wt+k

w

wt+k + pt+k g

bwt+k g

More compactly: wt =

w

Etfwt+1g + (1

w)

wt

(1 +

w ')

1

bwt

(5)

Wage In‡ation Dynamics 1 w w Wt 1

Wt =

+ (1

w )Wt

1

1 w

1

w

Log-linearization: wt =

w

wt

1

+ (1

w)

w t+1 g

w

(6)

wt

Combining (5) and (6): w t

where

w

(1

w )(1 w (1+ w ')

w)

= Et f

.

bwt

(7)

Additional Optimality Condition ct = Etfct+1g

1

(it

Etf

p t+1 g

)

Equilibrium De…ne real wage gap: ! et

! nt

!t

Price markups vs. output and real wage gaps: bpt = (mpnt ! t) = (e yt n et ) ! et =

yet

1

Combining (2) and (8): p t

where

p

p

1

.

=

Et f

p t+1 g

+

p

p

! et

yet +

(8)

p

! et

(9)

Wage markups vs. output and real wage gaps: bwt = ! t = ! et = ! et

w mrst ( yet + 'e nt ) ' + 1

Combining (7) and (10): w t

where

w

w

= Etf

+ 1' .

w t+1 g

+

w

yet

yet w

! et

(10)

(11)

Wage gap identity: ! et

w t

! et

1

p t

+

+ ! nt

(12)

Dynamic IS equation yet =

1

(it

Etf

p t+1 g

+

p t

w

rtn) + Etfe yt+1g

(13)

Interest Rate Rule: it =

p

+

w t

+

y

yet + vt

(14)

Dynamical system: xt = Aw Etfxt+1g + Bw zt where

Remark: yet =

xt [e yt; pt; wt ; ! e t 1]0 zt [b rtn vt; ! nt]0 p t

=

w t

= 0 cannot be solution, unless ! nt is constant.

Conditions for uniqueness of the equilibrium Particular case (

(15)

y

= 0): p

+

w

>1

Dynamic Responses to a Monetary Policy Shock Interest rate rule:

p

= 1:5 ;

y

=

Three calibrations: Baseline:

p

= 2=3,

w

= 3=4

Flexible wage:

p

= 2=3,

w

Flexible price:

p

= 0,

= 3=4

Figure 6.3

w

=0

w

= 0;

v

= 0:5

Monetary Policy Design with Sticky Wages and Prices Second Order Approximation to Welfare Losses 1

X 1 W = E0 2 t=0 L=

t

'+ + 1

'+ + 1

var(e yt ) +

yet2 p p

+

p

(

p

var(

p t)

p 2 t)

+

+

w (1

)

(

w

w (1

) w

var(

w 2 t )

+t:i:p:

w t )

Key policy issues replicating the natural equilibrium allocation is generally unfeasible. optimal monetary policy evaluation of alternative simple rules

Optimal Monetary Policy

min E0

1 X

t

+

t=0

subject to

'+ 1

p t

=

w t

= Etf

! et

Et f

1

! et

yet2 +

p t+1 g w t+1 g

+

+ w t

+

p

( pt)2 +

p

p

w

yet +

yet

p t

p

w

+ ! nt

w (1

! et

! et

) w

(

w 2 t )

Optimality conditions: '+ + 1 p p w (1

p t

) w

p

1;t

w

2;t

yet +

p

1;t

w t

+

1;t

+

+

3;t

2;t

=0

=0

2;t

3;t

w

3;t

Et f

(16) (17)

=0

3;t+1 g

(18) =0

(19)

Combined with (9), (11), and (12):

A0 xt = A1 Etfxt+1g + B where xt

[e yt ;

p t;

w t ;

! e t 1;

1;t 1 ;

2;t 1 ;

at

0 3;t ]

Dynamic Responses to a Technology Shock (Figure 6.4)

A Special Case with an Analytical Solution De…ne: (1

t

where #

p p+ w

#)

p t

+#

w t

(20)

+

yet

(21)

2 [0; 1]

Note that (9) and (11) imply: t

where

p w p+ w

=

Et f

t+1 g

+ '+ 1

no trade-o¤ ! when is it optimal to fully stabilize

t

(and the output gap)?

Assumptions:

p

=

;

w

p

=

w (1

)

Then, (16)-(18) simplify to:

for t = 1; 2; 3; ::: and

w

p t

+

p

w t

=

w

p 0

+

p

w 0

=

p

p

Equivalently, t

for t = 1; 2; 3; ::: , and

0

=

In levels: where qbt

qt

q

1

, and qt

=

#

#

yet

yet

ye0 for period 0

ye0 in period 0.

qbt = (1

#

yet

#) pt + # wt.

(22)

Combining (22) and (21) (using qbt = a qbt

for t = 0; 1; 2; :::where a

1

qbt

t

qbt 1):

+ a Etfb qt+1g = 0

# #(1+ )+

.

Stationary solution: where

1

Given that qb

p

1 4 a2 2a

1

qbt =

qbt

1

2 (0; 1) for t = 0; 1; 2; :::

= 0, the optimal policy requires:

for t = 0; 1; 2; :::

t

=0

yet = 0

Evaluation of Simple Rules under Sticky Wages and Prices Six rules: strict price in‡ation targeting ( strict wage in‡ation targeting (

p t = 0, all t) w t = 0, all t)

strict composite in‡ation targeting (

t

= 0, all t)

‡exible price in‡ation targeting (it =

+ 1:5

‡exible wage in‡ation targeting (it =

+ 1:5

‡exible composite in‡ation targeting (it =

p t) w t )

+ 1:5

Three scenarios baseline:

p

= 2=3 ;

w

= 3=4

low wage rigidities:

p

= 2=3 and

w

= 1=4

low price rigidities:

p

= 1=3 and

w

= 3=4

t)

Table 6.1: Evaluation of Simple Rules Optimal Strict Rules Flexible Rules Policy Price Wage Composite Price Wage Composite p

p

p

=

=

=

2 3

w

2 3

w

1 3

w

=

3 4

( p) ( w) (e y) L =

1 4

( p) ( w) (e y) L =

3 4

( p) ( w) (e y) L

0.64 0.22 0.04 0.023

0 0.82 0.98 0 2.38 0.52 0.184 0.034

0.66 0.19 0 0.023

1.50 1.05 0.75 0.221

1.08 0.30 1.16 0.081

1.12 0.42 0.01 0.089

0.29 1.24 0.19 0.010

0 0.82 2.91 0 0.61 0.52 0.038 0.034

0.21 1.63 0 0.012

1.40 1.49 0.29 0.097

1.45 0.98 0.68 0.104

1.30 1.25 0.32 0.083

1.64 0.11 0.17 0.016

0 1.91 0.98 0 2.38 0.27 0.184 0.021

1.75 0.06 0 0.017

2.58 1.47 0.87 0.271

2.10 0.07 0.60 0.030

2.10 0.10 0.58 0.031