Inequalities

Useful Inequalities Cauchy-Schwarz Minkowski H¨ older   n P n P i=1 n P i=1 Bernoulli xi y i i=1 2 ≤ |x...

0 downloads 114 Views 110KB Size
Useful Inequalities Cauchy-Schwarz

Minkowski

H¨ older

 

n P

n P

i=1

n P

i=1

Bernoulli

xi y i

i=1

2



|xi + yi |p

|xi yi | ≤





n P

i=1

1

p

n P

i=1

x2i





n P



|xi |p

(1 + x)r ≥ 1 + rx

{x2 > 0}

i=1

i=1

1/p 

(1 +

x)r

(1 +

nx)n+1



≤1+

1

p

n P

i=1

+

|yi |q



n P

i=1

|yi |p

1/q

1

p

for p ≥ 1.

for p, q > 1,

1 p

1 q

+

≥ (1 + (n +

for x ∈ [−1,

1 ), r−1

for x ∈ R, n ∈ N.

ex



xe

1 2−x

1+ xn n!

for x ∈ R, and

ex ≥ 1 + x + e−x

≥ 1 + x,

≤1−

x2 2

x 2

− 1) ≤

x2 n

≥ ex 1 −

+1≤

ex

≤ 1+

for x ≥ 0, reverse for x ≤ 0.

for x ∈ [0, ∼ 1.59] and

< xx < x2 − x + 1

x1/r (x

 x n n

rx(x1/r

2−x



for n > 1, |x| ≤ n.

 x n+x/2 n

≤1−

x 2

for x ∈ [0, 1].

− 1)

for x, y > 0.

2 − y − e−x−y ≤ 1 + x ≤ y + ex−y , and ex ≤ x + ex

logarithm

x−1 x 2x 2+x

≤ ln(x) ≤

x2 −1 2x

1 n

ln(n + 1) < ln(n) + ln(1 + x) ≥

x 2

ln(1 + x) ≥ x − x3 2

x−

hyperbolic

x cos x ≤ 2 x π



2

for x, y ∈ R.

1 i=1 i

x3 2

Stirling

e

means

min xi ≤

Lehmer

 n n e

≤ 2n .

P

P



Heinz



Newton





2πn

n P −1 xi

√1 x

<



x+1−

 n n 1/(12n+1) e e ≤(

Q

xi )1/n ≤



√ √ x−1 < 2 x−2 x−1

≤ n! ≤ 1 n

P



 n n 1/12n e e

2πn q

xi ≤

1 n

P

for x ≥ 1.

≤ en

P 2 x P i xi

xi 2 ≤

 n n e

≤ max xi

 P P p 1/p , w ≥ 0, Mp ≤ Mq for p ≤ q, where Mp = i i wi |xi | i wi = 1. Q In the limit M0 = i |xi |wi , M−∞ = mini {xi }, M∞ = maxi {xi }.

log mean

i

i

wi |xi |p

wi |xi |p−1

xy ≤ xy ≤

√

x+ 2

P wi |xi |q ≤ P i q−1 i wi |xi |



y



1

(xy) 4 ≤

x1−α y α +xα y 1−α 2

Sk 2 ≥ Sk−1 Sk+1 P 1 Sk =  n k

Jensen



1≤i1 0, α ∈ [0, 1].

Sk ≥

p

(k+1)

ai 1 ai 2 · · · aik ,

Sk+1

and

for 1 ≤ k < n,

ai ≥ 0.

≤ ln(n) + 1

Chebyshev

x √ 3

x3 3

≤ tan x

≤ sin x,

x2 , sinh x

 all for x ∈ 0,

for x ∈ R, α ∈ [−1, 1].

i

 P pi xi ≤ i pi ϕ (xi )

n P

f (ai )g(bi )pi ≥

n P

ai b i ≥

i=1

≤ x cos2 (x/2) ≤ sin x ≤ (x cos x + 2x)/3 ≤

≤ sin x ≤ x cos(x/2) ≤ x ≤ x +

P

where pi ≥ 0,

P

pi = 1, and ϕ convex.

π 2



.

n P

f (ai )pi

i=1

n  P

i=1

n  P g(bi )pi ≥ f (ai )g(bn−i+1 )pi i=1

for a1 ≤ · · · ≤ an , b1 ≤ · · · ≤ bn and f, g nondecreasing, pi ≥ 0,       Alternatively: E f (X)g(X) ≥ E f (X) E g(X) .

for x ∈ [0, ∼ 0.43], reverse elsewhere. √ ≤ x 3 cos x ≤ x − x3 /6 ≤ x cos

ϕ

Alternatively: ϕ (E [X]) ≤ E [ϕ(X)]. For concave ϕ the reverse holds.

for x ∈ [0, ∼ 0.45], reverse elsewhere.

ex(α+x/2)

nn kk (n−k)n−k

1

ln(x) ≤ n(x n − 1) for x, n > 0.

Pn

x cos x 1−x2 /3

cosh(x) + α sinh(x) ≤

√ √ 2 x+1−2 x <

for x ≥ 0, reverse for x ∈ (−1, 0].

x3 4

+

x2 2

≤ x cos x ≤ x3 sinh2 x



square root

Maclaurin-

for x ∈ [0, ∼ 2.51], reverse elsewhere.

x2 2

ln(1 − x) ≥ −x − trigonometric

≤ x − 1,

√x x+1

≤ ln(1 + x) ≤

for x, n > 0.

for x ∈ (0, 1).

for x, r ≥ 1. xy y xy + y x > 1 and ex > 1 + x > e x+y y



Pd n n for n ≥ d ≥ 0. ≤ nd + 1 and i=0 i ≤ 2  Pd d n en for n ≥ d ≥ 1. i=0 i ≤ d  Pd n n d for n ≥ d ≥ 0. i=0 i ≤ d 1 + n−2d+1 2    P n n αn n 1−α ≤ i=0 i ≤ 1−2α αn for α ∈ (0, 21 ). αn

power means

(iv) q < 0 < p , −q > x > 0, (v) q < 0 < p , −p < x < 0.  x n n

n k

and

n i=0 i

r > 1.

(ii) − p < −q < x < 0, (iii) − q > −p > x > 0. Reverse for:

ex ≥ 1 +

(en)k kk



Pd

= 1.

(a + b)n ≤ an + nb(a + b)n−1 for a, b ≥ 0, n ∈ N. p q ≥ 1 + xq for (i) x > 0, p > q > 0, 1+ x p

exponential

nk k!



2πnα(1−α)

for x ∈ [−1, 0], n ∈ N. 1)x)n

n k



  n n √ 1 1 for n ≥ k ≥ 0 and √4πn (1 − 8n ≤ √4πn (1 − 9n ≤ n ) ≤ 2n ). k n    n1 +n2 n1 n2 for n1 ≥ k1 ≥ 0, n2 ≥ k2 ≥ 0. ≤ k +k k1 k2 1 2 √ nH(α) π n  , H(x) = − log2 (xx (1−x)1−x ). G ≤ αn ≤ G for G = √ 2 2

for x ∈ [0, 1], r ∈ R \ (0, 1).

rx 1−(r−1)x

(n−k+1)k } k!

k

max { n , kk nk 4k!



for x ≥ −1, r ∈ R \ (0, 1). Reverse for r ∈ [0, 1].

1 1−nx

(1 +

yi2

|xi |p

(1 + x)r ≤ 1 + (2r − 1)x x)n

n P

binomial

v0.28 · January 13, 2016

rearrangement

i=1

n P

i=1

ai bπ(i) ≥

n P

ai bn−i+1

i=1

for a1 ≤ · · · ≤ an ,

b1 ≤ · · · ≤ bn and π a permutation of [n]. More generally: n n n P P P fi (bi ) ≥ fi (bπ(i) ) ≥ fi (bn−i+1 ) i=1

i=1

i=1

 with fi+1 (x) − fi (x) nondecreasing for all 1 ≤ i < n.

P

pi = 1.

Weierstrass

Q

1 − xi

i

 wi

P

≥1−

i

w i xi

where xi ≤ 1, and

Carleman

either wi ≥ 1 (for all i) or wi ≤ 0 (for all i). P If wi ∈ [0, 1], wi ≤ 1 and xi ≤ 1, the reverse holds. Young

Kantorovich

( px1p

+

P

xi 2

i

1 −1 ) qxq

xi yi

0 0.

Hadamard

(det A)2

Schur

Pn

i=1



A2ij

i=1 j=1

λ2i ≤

Pn

Hilbert

i,j=1

A2ij

and

i=1

di ≤

Pk

i=1

λi

Acz´ el

Qn Pn a P x i a i xi Qn i=1 i a ≤ Pn i=1 for xi ∈ [0, 12 ], ai ∈ [0, 1], ai = 1. i i=1 (1 − xi ) i=1 ai (1 − xi ) a1 b 1 −

given that Mahler

n Q

Pn a21

xi + yi

i=1

Abel Milne

b1 min k

Pn

ai b i Pn

i=2

k P

i=1

i=1 (ai

>

+ bi )

≥ a21 −

2 i=2 ai

1/n

ai ≤

2

≥ n P

i=1

n Q

i=1

or

1/n xi

b21

+

Pn >

2 b2 1 i=2 ai Pn 2 i=2 bi .

n Q

i=1

ai bi ≤ b1 max

 P

k

ai bi n i=1 ai +bi





1/n yi



Pn

2 i=2 bi



i=1

ϕ(ai ) ≥

1 n!

P

π

P∞

m=1



Pn

i=1

 Pn

i=1 bi



m P n Q

j=1 i=1

aiπ(j)

for a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn , Pt Pt i=1 ai ≥ i=1 bi for all 1 ≤ t ≤ n,

1 n!

P

n 1 · · · xbπ(n) xbπ(1)

π

1 c2 +1/2

<

Copson

∞  P P

n=1

n=1

Kraft LYM

P

k≥n

4

≤ π2

m=1

P

P∞

n=1

a2n

P∞

2n n=1 (n2 +c2 )2

ak k

p

2−c(i) ≤ 1

X∈A

Sauer-Shelah

P∞

≤π

a2m

 1 P∞ 2

n −1 |X|

≤ pp

∞ P

P∞

n=1

1 c2

<

an p

n=1

n2 a2n

1

2 2 n=1 bn

for am , bn ∈ R.

for an ≥ 0, p > 1, reverse if p ∈ (0, 1).

for c(i) depth of leaf i of binary tree, sum over all leaves. ≤ 1, A ⊂ 2[n] , no set in A is subset of another set in A.

|A| ≤ |str(A)| ≤

Pr Pr

vc(A) P i=0

n i

for A ⊆ 2[n] , and vc(A) = max{|X| : X ∈ str(A)}.

n  W

k  P Ai ≤ (−1)j−1 Sj

for 1 ≤ k ≤ n, k odd,

n  W

k  P Ai ≥ (−1)j−1 Sj

for 2 ≤ k ≤ n, k even.

i=1

Sk =

for an ∈ R.

for c 6= 0.

str(A) = {X ⊆ [n] : X shattered by A},

for b1 ≥ · · · ≥ bn ≥ 0. ai

am bn n=1 m+n

Mathieu

Bonferroni

ai

j=1 i=1

aij ≤

With max{m, n} instead of m + n, we have 4 instead of π. P∞  a1 +a2 +···+an p  p p P∞ p ≤ p−1 for an ≥ 0, p > 1. n=1 an n=1 n

where xi , yi > 0.

i=1

m P n Q

and

ϕ(bi )

i=1

P∞

i=1

k P

Pn

n 1 ≥ · · · xa xa π(n) π(1)

an

λ1 ≥ · · · ≥ λn the eigenvalues, d1 ≥ · · · ≥ dn the diagonal elements. Ky Fan

Pn

P∞

for 1 ≤ k ≤ n.

A is an n × n matrix. For the second inequality A is symmetric.

aiπ(j)

j=1 i=1

|ak |

k=1

where 0 ≤ ai1 ≤ · · · ≤ aim for i = 1, . . . , n and π is a permutation of [n]. Q n Pn Qn for |ai |, |bi | ≤ 1. i=1 ai − i=1 bi ≤ i=1 |ai − bi | Qn Q n n i=1 (α + ai ) ≥ (1 + α) , where i=1 ai ≥ 1, ai > 0, α > 0. P  P  P  P  1+y 1−y 1−y 1+y 1+x 1−x 1−x 1+x bi bi ≥ bi bi i ai i ai i ai i ai

Carlson

where A is an n × n matrix. Pk

Pn

xi ≥ 0 and the sums extend over all permutations π of [n].

where xi > 0, (xn+1 , xn+2 ) := (x1 , x2 ),

where x, y, z ≥ 0, t > 0

n m Q P

≤e

where a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn and {ak }  {bk },

i=1

xt (x − y)(x − z) + y t (y − z)(y − x) + z t (z − x)(z − y) ≥ 0

1/k

with equality for t = n and ϕ is convex (for concave ϕ the reverse holds).

Hardy

n P n Q

aij ≥

|ai |

and {ai }  {bi } (majorization), i.e.

and n ≤ 12 if even, n ≤ 23 if odd. Schur

m Q n P

k i=1

for 1 ≥ x ≥ y ≥ 0, and i = 1, . . . , n.

for ϕ convex.

for ai , bi ≥ 0, or more generally: P P for ϕ concave, and a = ai , b = bi .



n 2

Callebaut f (x) dx

k=1

j=1 i=1

where a < b, and ϕ convex.

ϕ(x) dx ≤

≥ a log

bi 

for x, y ≥ 0, p, q > 0,

R U +1

f (i) ≤

and

xi xi+1 +xi+2

i=1

i=L

≥n

aπ(i)

n P

PU

1 b−a



+

1 p

for xi , yi > 0, √ A = (m + M )/2, G = mM .

≤ M < ∞,

f (b)−f (a) b−a



yq q

2   A 2 P yi 2 ≤ G i xi yi

i

f (x) dx ≤

a+b 2

i=1

P

 P

≤ xy ≤

xp p

sum & product

Q

Pn

j=1

j=1

P

1≤i1 0.

  nσ 2 Mε  ≤ exp − 2 θ where Xi i.r.v., 2 M nσ i=1 P 1 Var[Xi ], |Xi | ≤ M (w. prob. 1), ε ≥ 0, E[Xi ] = 0, σ 2 = n Pr

n  P

Xi ≥ ε



θ(u) = (1 + u) log(1 + u) − u.   n  P  −ε2 Pr Xi ≥ ε ≤ exp 2 2(nσ + M ε/3) i=1

for Xi i.r.v.,

1 P E[Xi ] = 0, |Xi | < M (w. prob. 1) for all i, σ 2 = n Var[Xi ], ε ≥ 0.     −δ 2 P Pr Xn − X0 ≥ δ ≤ 2 exp for martingale (Xk ) s.t. 2 2 n i=1 ci Xi − Xi−1 < ci (w. prob. 1), for i = 1, . . . , n, δ ≥ 0.

Var[Z] ≤

1 2

E



n P

i=1

Z − Z (i)

2



for Xi , Xi ′ ∈ X i.r.v.,

f : X n → R, Z = f (X1 , . . . , Xn ), Z (i) = f (X1 , . . . , Xi ′ , . . . , Xn ).     −2δ 2 Pr Z − E[Z] ≥ δ ≤ 2 exp Pn for Xi , Xi ′ ∈ X i.r.v., 2 i=1 ci Z, Z (i) as before, s.t. Z − Z (i) ≤ ci for all i, and δ ≥ 0.

V  B i ≤ M exp M ≤ Pr Q M = (1 − Pr[Bi ]), ∆ =



∆ 2 − 2ε P



i6=j,Bi ∼Bj

Pr

V

 Q B i ≥ (1 − xi ) > 0

where Pr[Bi ] ≤ ε for all i,

Pr[Bi ∧ Bj ].

where Pr[Bi ] ≤ xi ·

Q

(i,j)∈D

(1 − xj ),

for xi ∈ [0, 1) for all i = 1, . . . , n and D the dependency graph.

If each Bi mutually indep. of the set of all other events, exc. at most d, V  B i > 0. Pr[Bi ] ≤ p for all i = 1, . . . , n , then if ep(d + 1) ≤ 1 then Pr

i

where X1 , . . . , Xn are i.r.v., E[Xi ] = 0, P Var[Xi ] < ∞ for all i, Sk = ki=1 Xi and ε > 0.

3

    Pr max1≤k≤n |Xk | ≥ ε ≤ E |Xn | /ε

Azuma

A related lemma, assuming E[X] = 0, X ∈ [a, b] (w. prob. 1) and λ ∈ R:  2    λ (b − a)2 E eλX ≤ exp 8   P Pr max |Sk | ≥ ε ≤ ε12 Var[Sn ] = ε12 Var[Xi ]

q   8 if λ ≥ Pr X − E[X] ≥ λσ ≤ 9λ4 2 , 3   2 2τ 4τ if ε ≥ √ , Pr X − m ≥ ε ≤ 9ε2 3   ε 2τ Pr X − m ≥ ε ≤ 1 − √ if ε ≤ √ . 3τ

for Xi ∈ [0, 1] k-wise i.r.v.,

ˆ = ⌈µδ/(1 − p)⌉, E[Xi ] = pi , X = P Xi , µ = E[X], p = k≥k

for X ≥ 0,

Where X is a unimodal r.v. with mode m,

Doob

Pr[X ≥ t] ≤ F (a)/at for X r.v., Pr[X = k] = pk , P F (z) = k pk z k probability gen. func., and a ≥ 1.   µ    eδ −µδ 2 Pr X ≥ (1 + δ)µ ≤ ≤ exp 3 (1 + δ)(1+δ) P for Xi i.r.v. from [0,1], X = Xi , µ = E[X], δ ≥ 0 resp. δ ∈ [0, 1). µ      e−δ −µδ 2 Pr X ≤ (1 − δ)µ ≤ for δ ∈ [0, 1). ≤ exp 2 (1 − δ)(1−δ)   Further from the mean: Pr X ≥ R ≤ 2−R for R ≥ 2eµ (≈ 5.44µ).  

Petunin-Gauss

Etemadi

    E (X − µ)k and Pr X − µ ≥ t ≤ tk k/2    nk for Xi ∈ [0, 1] k-wise indep. r.v., Pr X − µ ≥ t ≤ Ck t2 √ P X= Xi , i = 1, . . . , n, µ = E[X], Ck = 2 πke1/6k ≤ 1.0004, k even.

Pr X ≥ t ≤

Kolmogorov

Vysochanskij-

  Pr X − E[X] ≥ t ≤ Var[X]/t2 where t > 0.   Pr X − E[X] ≥ t ≤ Var[X]/(Var[X] + t2 ) where t > 0.   Pr X > 0 ≥ (E[X])2 /(E[X 2 ]) where E[X] ≥ 0.   Pr X = 0 ≤ Var[X]/(E[X 2 ]) where E[X 2 ] 6= 0.



Var[X] (1 − µ)2 (E[X])2 + Var[X]

  Pr X ≥ µ E[X] ≥ 1 −

Var[X] < ∞, and µ ∈ (0, 1).

    Pr |X| ≥ a ≤ E |X| /a where X is a random variable (r.v.), a > 0.     Pr X ≤ c ≤ (1 − E[X])/(1 − c) for X ∈ [0, 1] and c ∈ 0, E[X] .  Pr X ∈ S] ≤ E[f (X)]/s for f ≥ 0, and f (x) ≥ s > 0 for all x ∈ S.



Hoeffding

Paley-Zygmund

✁✂

L´ aszl´ o Kozma · latest version: http://www.Lkozma.net/inequalities_cheat_sheet