Cox

Survival and coexistence for a competition model using super-Brownian motion Joint work with Rick Durrett and Ed Perkin...

0 downloads 90 Views 2MB Size
Survival and coexistence for a competition model using super-Brownian motion

Joint work with Rick Durrett and Ed Perkins

Ted Cox

The competition model is the stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, Ann. Probab. (1999).

Mathematics Department Syracuse University Syracuse, NY 13244

We obtain survival and coexistence conditions via a comparison with super-Brownian motion.

4th Cornell Probability Summer School June 23 – July 3, 2008

Outline Part II 1

the Lotka-Volterra model of NP(1999)

2

Lotka-Volterra ⇒ super-Brownian motion

3

survival and coexistence

The voter model

Introduced independently by Clifford and Sudbury (1973) Holley and Liggett (1975).

Part I 1

2

3

the voter model (construction, coalescing random walks, duality, martingales) super-Brownian motion (branching random walks, martingale problem) voter models ⇒ super-Brownian motion

Model of neutral competition between types.

Voter model dynamics

Graphical construction I Or,

There is a voter at each site x of Zd holding one of two possible opinions, 0 or 1. Probability kernel p(x), x ∈ Zd symmetric, irreducible, finite range, p(0) = 0, covariance matrix σ 2 I , for example 1 if |x| = 1 p(x) = 2d

Tnx,y , n ≥ 1, x, y ∈ Zd are the “voting times” At each time Tnx,y draw an arrow from y to x the voter at x adopts the opinion of the voter at y .

Each voter has an independent mean one exponential alarm clock. When the clock at x goes off, the voter there adopts the opinion of site y with probability p(y − x), and the clock is reset.

Graphical construction II

The Tnx,y are the “arrival times” of Λx,y , which are independent, rate p(y − x) Poisson processes. ξt (x) = the opinion at x at time t

Duality t

Zd

0

1

0

1

1

0

1

0

0

1

1?

1?

1?

0?

0

1

1

0

t

1

0

Duality calculation I Duality Equation

c x ) = 1) P(ξt (x) = 1) = P(ξ0 (W t X = P(Wtx = y )ξ0 (y )

P(ξt (x) = 1 ∀ x ∈ A, ξt (y ) = 0 ∀ y ∈ B) c x ) = 1 ∀ x ∈ A, ξ0 (W cty ) = 0 ∀ y ∈ B) = P(ξ0 (W t

2

=

pt (x, y )ξ0 (y )

y

c x , x ∈ Zd Coalescing random walk system W t 1

y

X

rate one random walks on Zd with jump kernel p(x) and cx = x W 0

where pt (x, y ) = e

walks are independent until they meet, at which time they coalesce and move together

−t

∞ n (n) X t p (x, y ) n=0

n!

If ξ0 (x) are iid Bernoulli(θ), then P(ξt (x) = 1) = θ.

Duality Calculation II

Graphical construction III

P(ξt (x) = 1, ξt (y ) = 0) =

cx ) P(ξ0 (W t

=

cty ) 1, ξ0 (W

= 0)

= P(ξ0 (Wtx ) = 1, ξ0 (Wty ) = 0, τ (x, y ) > t)

ξt (x) = ξ0 (x) +

= ξ0 (x) +

Z tX 0

→ 0 as t → ∞ if d = 1, 2 where τ (x, y ) = inf{s ≥ 0 : Wsx = Wsy } If ξ0 (x) are iid Bernoulli(θ), then P(ξt (x) = 1, ξt (y ) = 0) → θ(1 − θ)P(τ (x, y ) = ∞)

= ξ0 (x) +

y

Z tX 0

h ξs− (y ) − ξs− (x) p(y − x)ds

y

i +(Λx,y (ds) − p(y − x)ds)

Z tX 0

 ξs− (y ) − ξs− (x) Λx,y (ds)

y

 ξs (y ) − ξs (x) p(y − x) ds + Mtx

where Mtx is a martingale with square function Rt P hM x it = 0 y 1{ξs (y ) 6= ξs (x)}p(y − x) ds

“Measure-valued” voter model, |ξ0 | < ∞ Define Xt =

P

x ξt (x)δx ,

Using ξt (x) = ξ0 (x) +

Xt (φ) = X0 (φ) +

= X0 (φ) +

hM(φ)it =

0

y

0

P x

φ(x)ξt (x).

 ξs (y ) − ξs (x) p(y − x) ds + Mtx

(p − I )φ(x)ξs (x) ds + Mt (φ)

x

Z tX

Z tX 0

Z tX

Z tX 0

Xt (φ) =

If φ = 1, then Xt (1) = X0 (φ) +

Z tX 0

Xs ((p − I )1) ds + Mt (φ)

x

= X0 (φ) + Mt (1) so Xt (1) = |ξt | is a martingale.

Xs ((p − I )φ) ds + Mt (φ)

x

φ2 (x)1{ξs (y ) 6= ξs (x)}p(y − x) ds

x,y

Super-Brownian Motion Xt , t ≥ 0 A specific model: Introduced by Watanabe (1968) and Dawson (1977). Measure-valued (finite measures on Rd ) process. Diffusion limit of branching random walk systems. particles die and give birth to other particles particles move about on Zd multiple particles per site allowed Many variations . . .

particles at a given site x die at rate 1 give birth at rate 1 to a particle at site y with probability p(y − x)

ηt (x) = the number of particles at x at time t P |ηt | = x ηt (x) is a critical branching process

Our particles don’t actually walk.

Rescaled branching random walks Scale space:

√ Zd / N



pN (x) = p(x N),

Super-Brownian motion martingale problem √ x ∈ Zd / N

µ(φ) =

R

SBM(X0 , σ 2 , b)

Scale time:

√ ηtN = rate N branching random walk on Zd / N, kernel pN

Scale mass: mN = N, XtN

1 = mN

X √ x∈Zd / N

φ(x)µ(dx). Z

Xt (φ) = X0 (φ) + where Mt (φ) is a continuous

t

0

2

Xs ( σ2 ∆φ) ds + Mt (φ)

L2 -martingale, Z

hM(φ)it = b

ηtN (x) δx

t

0

Xs (φ2 ) ds

σ 2 = diffusion rate

Theorem Assume X0N (1) is bounded and X0N → X0 . Then X·N ⇒ X· as N → ∞, where X· is SBM(X0 , σ 2 , 2).

Voter model ξt as branching random walk? ξ(x) = 1 ⇔ particle at x ξ(x) = 0 ⇔ no particle at x

b = branching rate Xt (1) is a martingale.

Voter model ≈ BRW ⇒ SBM? Scale space:

√ Zd / N

Scale mass: mN =

p(y − x)1{ξt (y ) = 0} XtN =

particle at x dies at rate X p(y − x)1{ξt (y ) = 0} y

BRW behavior (?) provided the 1’s are relatively isolated.

√ x ∈ Zd / N

√ Scale time: ξtN = rate N voter model on Zd / N, kernel pN (

particle at x gives birth to a particle at y at rate

√ pN (x) = p(x N),

1 mN

X √

N N/ log N

if d ≥ 3 if d = 2

ξtN (x) δx

x∈Zd / N

Theorem Assume d ≥ 2, X0N (1) is bounded and X0N → X0 . Then X·N ⇒ X· as N → ∞ where X· is SBM(X0 , σ 2 , 2γe ).

Strategy of proof, d ≥ 3

Theorem Assume d ≥ 2, X0N (1) is bounded and X0N → X0 . Then X·N ⇒ X· as N → ∞ where X· is SBM(X0 , σ 2 , 2γe ).

∞ d SBM Xt is unique solution Z t of: ∀ φ ∈ C0 (R ), 2 Xt (φ) = X0 (φ) + Xs ( σ2 ∆φ) ds + Mt (φ) Z t 0 hM(φ)it = b Xs (φ2 ) ds

(P γe =

p(x)P(τ (0, x) = ∞) if d ≥ 3 2πσ 2 if d = 2 x

Reduction in branching rate compared to BRW (d ≥ 3). A low density limit theorem since |ξtN | = O(N), so # of 1’s O(N) ≈ d/2 → 0 sites/volume N

We know

(d ≥ 3)

0

The rescaled, measure-valued voter models XtN (φ) satisfy a “similar” martingale problem. We must show laws of X·N are tight all subsequential limits satisfy SBM martingale problem

But why γe ?

1. (Unscaled) voter model: Z tX Xt (φ) = X0 (φ) + Xs ((p − I )φ) ds + Mt (φ) 0

2. Rescaled voter models: XtN (φ)

=

X0N (φ)

Since N(pN − I )φ ≈ XtN (φ)



Z

+

x

t

0

0

XsN (N(pN

− I )φ) ds +

MtN (φ)

σ2 2 ∆φ,

X0N (φ)

Z +

0

t

1. (Uunscaled) voter model: Z tX hM(φ)it = φ2 (x)p(y − x)1{ξs (y ) 6= ξs (x)} ds

2 XsN ( σ2 ∆φ) ds

+

MtN (φ)

x,y

2. Rescaled voter models: Z 1 tX 2 N hM (φ)it = φ (x)pN (y − x)1{ξsN (y ) 6= ξsN (x)} ds N 0 x,y Z t ≈ 2γe XsN (φ2 ) ds?? γe =

0

P x

p(x)P(τ (0, x) = ∞)

E hM N (φ)it ≈ 2γe E

Rt 0

XsN (φ2 )ds? εN → 0 and NεN → ∞

1 E hM (φ)it = N N

2 ≈ N

Z tX 0

2

x)E 1{ξsN (y )

2

x)E ξsN (x)1{ξsN (y )

φ (x)pN (y −

x,y

Z tX 0

φ (x)pN (y −

x,y

6=

ξsN (x)} ds = 0} ds

Z 2 tX 2 φ (x)pN (y − x)E ξsN (x)P(τ (x, y ) = ∞) ds?? ≈ N 0 x,y Z 2γe t X 2 = φ (x)E ξsN (x) ds N 0 x Z t = 2γe XsN (φ2 ) ds 0

P(τ N (x, y ) > εN ) ≈ P(τ (x, y ) = ∞) x ≈ x 0 and y ≈ y 0 but P(τ (x 0 , y 0 ) < ∞) ≈ 0

P(ξsN (x) = 1, ξsN (y ) = 0) / ξ0N , τN (x, y ) > εN ) = P(Wsx ∈ ξ0N , Wsy ∈ 0

≈ P(τN (x, y ) > εN ) · P(Wsx ∈ ξ0N ) · P(Wsy ∈ / ξ0N ) 0

≈ P(τ (x, y ) = ∞) · P(Wsx ∈ ξ0N ) · 1 = P(τ (x, y ) = ∞) · P(ξsN (x) = 1)

Rescaled branching random walks II

√ √ √ Scale space: Zd / N, pN (x) = p(x N), x ∈ Zd / N

σ2 Xt (φ) = X0 (φ) + 2

Scale time: a particle at x dies at rate N+d gives birth at rate (N+b)pN (y − x) to a particle at y Scale mass: mN = N, XtN =

1 mN

Super-Brownian Motion SBM(X0 , σ 2 , b, g )

X √ x∈Zd / N

Z 0

t

Z Xs (∆φ) ds + Mt (φ) + g

where Mt (φ) is a continuous L2 -mg with hM(φ)it = b σ 2 = diffusion rate

ηtN (x) δx

Theorem Assume X0N (1) is bounded and X0N → X0 . Then X·N ⇒ X· as N → ∞, where X· is SBM(X0 , σ 2 , 2, g ), where g = b − d.

0

b = branching rate g = growth rate g > 0 implies P( lim Xt (1) = ∞) > 0. t→∞

t

Xs (φ) ds

Rt 0

Xs (φ2 ) ds

The NP stochastic spatial Lotka-Volterra model

Neuhauser and Pacala (1999), a model for competition between two species each site of Zd occupied by a single individual

Ingredients nonnegative mortality constants α0 , α1 symmetric, irreducible probability kernel p(x) on Zd , p(0) = 0, covariance matrix σ 2 I . nearest neighbor case: p(x) =

types are 0 and 1

1 if |x| = 1, x ∈ Zd 2d

local frequencies of type i for site x in configuration ξ, X p(y − x)1{ξ(y ) = i} i = 0, 1 fi (x, ξ) =

individuals die and get replaced

y

ξt (x) = the type of individual at site x at time t

Fecundity parameter λ = 1 (for now).

Dynamics for LV process ξt

LV rate function

At site x at time t with fi = fi (x, ξt− ), 0→1

at rate

f1 · (f0 + α0 f1 )

1→0

at rate

f0 · (f1 + α1 f0 )

Interpretation: if ξt− (x) = 0, then death at rate (f0 + α0 f1 ) replacement by an individual of type 1 with probability f1

  P ξt+h (x) 6= ξt (x) | Ft = c(x, ξt )h + o(h) as h ↓ 0

c(x, ξ) =

  f1 · (f0 + α0 f1 )

if ξ(x) = 0

  f0 · (f1 + α1 f0 )

if ξ(x) = 1

fi = fi (x, ξ) =

P y

p(x, y )1{ξ(y ) = i}

i = 0, 1

Graphical construction: Yes

Death incorporates interspecific competition rate:

αi

intraspecific competition rate:

1

Explicit calculations: difficult because no simple dual process, except . . .

(α0 , α1 ) = (1, 1) is the voter model fi = fi (x, ξ) =

P

y p(x, y )1{ξ(y ) = i}

The LV rate function is ( f1 · (f0 + α0 f1 ) c(x, ξ) = f0 · (f1 + α1 f0 )

i = 0, 1

if ξ(x) = 0 if ξ(x) = 1

Set α0 = α1 = 1, use f0 + f1 = 1, get voter model rate function ( f1 if ξ(x) = 0 c(x, ξ) = f0 if ξ(x) = 1 Our focus: The behavior of the LV process for (α0 , α1 ) ≈ (1, 1)

Answers for the voter model (α0 , α1 ) = (1, 1)

Survival and coexistence Let |ξ| =

X

ξ(x), the number of 1’s in ξ.

x

Survival (of 1’s): For |ξ0 | = 1, P(|ξt | > 0 ∀ t ≥ 0) > 0 Coexistence: ∃ stationary distribution µ with   µ infinitely many individuals of each type = 1 Goal: Given p(x), determine what parameter values α0 , α1 correspond to survival and/or coexistence.

LV = voter model + perturbation? 0 → 1 at rate f1 (f0 + α0 f1 +f1 − f1 ) = f1 (1 + (α0 − 1)f1 ) = f1 + (α0 − 1)f12

For all d ≥ 1: no survival |ξt | is a martingale. For d ≤ 2: no coexistence.

So the LV rate function is ( f1 + (α0 − 1)f12 c(x, ξ) = f0 + (α1 − 1)f02

if ξ(x) = 0 if ξ(x) = 1

For d ≥ 3: coexistence . For (α0 , α1 ) near (1, 1), LV = voter model + small perturbation

Strategy for proving survival/coexistence

Prove analogue of VM ⇒ SBM for LV process for (α0 , α1 ) ≈ (1, 1) and identify limiting parameters.

Scaled measure-valued L-V processes XtN , N = 1, 2, . . . Scale space/time/mass as before. √ space Zd / N ( N if d ≥ 3 mass mN = N/ log N if d = 2 time

When g > 0 (so limiting SBM survives) argue that the approximating LV processes must survive. If both the 1’s and 0’s survive there should be coexistence.

Put αi = 1 + 0→1

at rate

1→0

at rate

θi N , ξ has rates N t   N f1 + (α0N − 1)f12 = Nf1 + θ0 f12   N f0 + (α1N − 1)f02 = Nf0 + θ1 f02

Measure-valued LV process

XtN =

1 mN

X √ x∈Zd / N

ξtN (x) δx

Convergence Theorem (CP) Assume d ≥ 2 , X0N (1) is bounded, αiN = 1 + Then

θi and X0N → X0 . mN

X·N ⇒ X·

where X· is SBM(X0 , 2γe , σ 2 /2, g ), with ( γ0 θ0 − γ1 θ1 if d ≥ 3 g= γ ∗ (θ0 − θ1 ) if d = 2

  p(e)p(e 0 )P τ (0, e) = τ (0, e 0 ) = ∞   X γ0 = p(e)p(e 0 )P τ (0, e) = τ (0, e 0 ) = ∞, τ (e, e 0 ) < ∞

γ1 =

X

γ0 < γ1 ∗

γ = 2πσ

2



Z 0



X

p(e)p(e 0 )a(y − x)

x,y ,e,e 0

P τ (0, e) ∧ τ (0, e 0 ) > τ (e, e 0 ) ∈ ds, Ws0 = x, Wse = y γ ∗ , γ0 , γ1 are coalescing random walk quantities



d ≥ 3 survival parameter values?

αiN = 1 +

d ≥ 3 Lotka-Volterra survival

θi mN

α1

6

slope m0

Limiting SBM growth rate is g = γ0 θ0 − γ1 θ1 1

Let m0 = γ0 /γ1 < 1, g > 0 iff θ1 < m0 θ0

........................ .................... ................. .............. ............ ......... ........ ....... ...... ..... ..... . . . . ... ... ... ... ... .. ..

slope p∗

Survival

Replacing θi with αi − 1 suggests survival for (α0 , α1 ) near (1, 1) below the line α1 − 1 < m0 (α0 − 1)

slope 1/p∗ α0

1 γ0 0. given ε > 0 can choose large K , L, M, T such that

Based on Bramson/Durrett method.

e0 (I0 ) ≥ M ⇒ P(X eT (I−1 ) ∧ X eT (I1 ) ≥ M) > 1 − ε X

On large scales, can compare LV with supercritical oriented percolation. Difficulties with method involve our inability to compute second moments.

I−1 ˜I0

I1

I0

I0 = [−L, L] × R d−1 , Im = I0 + 2me1 eI0 = K I0 et is Xt restricted to eI × [0, T ]. X

2. Lotka-Volterra survival (finite time)

3. Lotka-Volterra survival (infinite time)

Lotka-Volterra models XtN with parameters αiN and limiting growth rates gN → g = γ0 θ0 − γ1 θ1 > 0 for all large N, e N (I N ) ≥ M ⇒ P(X e N (I N ) ∧ X e N (I N ) ≥ M) > 1 − ε X 0 0 NT −1 NT 1 N I−1

˜I N 0

I1N

I0N

√ √ I0N = √NI0 , ImN = I0N + 2m Ne1 eI N = NeI0 0 e N is X N restricted to eI N × [0, NT ]. X t

t

NT 0

T 0

The survival curve, d ≥ 3

Extinction?

Define the survival curve α1 = h(α0 ) by h(α0 ) = sup{α1 : survival for (α0 , α1 )}

Is the slope m0 correct? Is h0 (1) = m0 ? Need to supplement survival result with extinction result.

Assume (α0 , α1 ) ≈ (1, 1), above our line, so g < 0. α1

The SBM approximation g < 0 does not seem to be enough to obtain extinction, ξt = 0 eventually.

6

Need to use hydrodynamical approach, with fast voter instead of fast stirring.

h(α0)

... .... .... .... .... ..... ..... ...... ..... ...... ...... ...... ...... ...... . . . . . . ..... ....... ....... ....... ......... ......... ......... ........ ......... ......... ........ ........ ....... ....... ....... ....... . . . . . ... ....... ...... ...... ..... ..... .... ...

Extinction

1

Survival

α0

1

-

h0 (1) ?

We know h0 (1−) ≤ m0 < 1 and h0 (1+) ≥ m0

Theorem (CDP) For d ≥ 3,

h0 (1−) = m0

1

h0 (1+) = 1 1

2

3

α1

6

h(α0)

1

.. .... .... .... . . . . ... .... .... ..... . . . . . . . . . . . ............. ............. ................... Survival

1

4

5

α0

-

Rescaled voter models converge to super-Brownian motion (Cox, Durrett Perkins). Ann. Probab. 28 (2000), 185-234. Super-Brownian limits of voter model clusters (Bramson, Cox and LeGall). Ann. Probab. 29 (2001), 1001-1032. Rescaled Lotka-Volterra models converge to super-Brownian motion (Cox and Perkins). Ann. Probab. 33 (2005), 904-947. Survival and coexistence in stochastic spatial Lotka-Volterra (Cox and Perkins). Prob. Theory Rel. Fields. 139 (2007), 89-142. Renormalization of the two-dimensional Lotka-Volterra model (Cox and Perkins). Ann. Appl. Probab. 18 (2008), 747-812.